1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185
|
*> \brief \b CLARCM
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download CLARCM + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/clarcm.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/clarcm.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/clarcm.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE CLARCM( M, N, A, LDA, B, LDB, C, LDC, RWORK )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDB, LDC, M, N
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), RWORK( * )
* COMPLEX B( LDB, * ), C( LDC, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLARCM performs a very simple matrix-matrix multiplication:
*> C := A * B,
*> where A is M by M and real; B is M by N and complex;
*> C is M by N and complex.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A and of the matrix C.
*> M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns and rows of the matrix B and
*> the number of columns of the matrix C.
*> N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA, M)
*> A contains the M by M matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >=max(1,M).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is REAL array, dimension (LDB, N)
*> B contains the M by N matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >=max(1,M).
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*> C is COMPLEX array, dimension (LDC, N)
*> C contains the M by N matrix C.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >=max(1,M).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (2*M*N)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complexOTHERauxiliary
*
* =====================================================================
SUBROUTINE CLARCM( M, N, A, LDA, B, LDB, C, LDC, RWORK )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, LDC, M, N
* ..
* .. Array Arguments ..
REAL A( LDA, * ), RWORK( * )
COMPLEX B( LDB, * ), C( LDC, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E0, ZERO = 0.0E0 )
* ..
* .. Local Scalars ..
INTEGER I, J, L
* ..
* .. Intrinsic Functions ..
INTRINSIC AIMAG, CMPLX, REAL
* ..
* .. External Subroutines ..
EXTERNAL SGEMM
* ..
* .. Executable Statements ..
*
* Quick return if possible.
*
IF( ( M.EQ.0 ) .OR. ( N.EQ.0 ) )
$ RETURN
*
DO 20 J = 1, N
DO 10 I = 1, M
RWORK( ( J-1 )*M+I ) = REAL( B( I, J ) )
10 CONTINUE
20 CONTINUE
*
L = M*N + 1
CALL SGEMM( 'N', 'N', M, N, M, ONE, A, LDA, RWORK, M, ZERO,
$ RWORK( L ), M )
DO 40 J = 1, N
DO 30 I = 1, M
C( I, J ) = RWORK( L+( J-1 )*M+I-1 )
30 CONTINUE
40 CONTINUE
*
DO 60 J = 1, N
DO 50 I = 1, M
RWORK( ( J-1 )*M+I ) = AIMAG( B( I, J ) )
50 CONTINUE
60 CONTINUE
CALL SGEMM( 'N', 'N', M, N, M, ONE, A, LDA, RWORK, M, ZERO,
$ RWORK( L ), M )
DO 80 J = 1, N
DO 70 I = 1, M
C( I, J ) = CMPLX( REAL( C( I, J ) ),
$ RWORK( L+( J-1 )*M+I-1 ) )
70 CONTINUE
80 CONTINUE
*
RETURN
*
* End of CLARCM
*
END
|