1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
|
*> \brief \b DPPTRI
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DPPTRI + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dpptri.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dpptri.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dpptri.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DPPTRI( UPLO, N, AP, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION AP( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DPPTRI computes the inverse of a real symmetric positive definite
*> matrix A using the Cholesky factorization A = U**T*U or A = L*L**T
*> computed by DPPTRF.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': Upper triangular factor is stored in AP;
*> = 'L': Lower triangular factor is stored in AP.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
*> On entry, the triangular factor U or L from the Cholesky
*> factorization A = U**T*U or A = L*L**T, packed columnwise as
*> a linear array. The j-th column of U or L is stored in the
*> array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = U(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = L(i,j) for j<=i<=n.
*>
*> On exit, the upper or lower triangle of the (symmetric)
*> inverse of A, overwriting the input factor U or L.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, the (i,i) element of the factor U or L is
*> zero, and the inverse could not be computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup doubleOTHERcomputational
*
* =====================================================================
SUBROUTINE DPPTRI( UPLO, N, AP, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION AP( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL UPPER
INTEGER J, JC, JJ, JJN
DOUBLE PRECISION AJJ
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DDOT
EXTERNAL LSAME, DDOT
* ..
* .. External Subroutines ..
EXTERNAL DSCAL, DSPR, DTPMV, DTPTRI, XERBLA
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DPPTRI', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Invert the triangular Cholesky factor U or L.
*
CALL DTPTRI( UPLO, 'Non-unit', N, AP, INFO )
IF( INFO.GT.0 )
$ RETURN
*
IF( UPPER ) THEN
*
* Compute the product inv(U) * inv(U)**T.
*
JJ = 0
DO 10 J = 1, N
JC = JJ + 1
JJ = JJ + J
IF( J.GT.1 )
$ CALL DSPR( 'Upper', J-1, ONE, AP( JC ), 1, AP )
AJJ = AP( JJ )
CALL DSCAL( J, AJJ, AP( JC ), 1 )
10 CONTINUE
*
ELSE
*
* Compute the product inv(L)**T * inv(L).
*
JJ = 1
DO 20 J = 1, N
JJN = JJ + N - J + 1
AP( JJ ) = DDOT( N-J+1, AP( JJ ), 1, AP( JJ ), 1 )
IF( J.LT.N )
$ CALL DTPMV( 'Lower', 'Transpose', 'Non-unit', N-J,
$ AP( JJN ), AP( JJ+1 ), 1 )
JJ = JJN
20 CONTINUE
END IF
*
RETURN
*
* End of DPPTRI
*
END
|