1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489
|
*> \brief \b DSTEBZ
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DSTEDC + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dstedc.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dstedc.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dstedc.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
* LIWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER COMPZ
* INTEGER INFO, LDZ, LIWORK, LWORK, N
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DSTEDC computes all eigenvalues and, optionally, eigenvectors of a
*> symmetric tridiagonal matrix using the divide and conquer method.
*> The eigenvectors of a full or band real symmetric matrix can also be
*> found if DSYTRD or DSPTRD or DSBTRD has been used to reduce this
*> matrix to tridiagonal form.
*>
*> This code makes very mild assumptions about floating point
*> arithmetic. It will work on machines with a guard digit in
*> add/subtract, or on those binary machines without guard digits
*> which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or Cray-2.
*> It could conceivably fail on hexadecimal or decimal machines
*> without guard digits, but we know of none. See DLAED3 for details.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] COMPZ
*> \verbatim
*> COMPZ is CHARACTER*1
*> = 'N': Compute eigenvalues only.
*> = 'I': Compute eigenvectors of tridiagonal matrix also.
*> = 'V': Compute eigenvectors of original dense symmetric
*> matrix also. On entry, Z contains the orthogonal
*> matrix used to reduce the original matrix to
*> tridiagonal form.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The dimension of the symmetric tridiagonal matrix. N >= 0.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> On entry, the diagonal elements of the tridiagonal matrix.
*> On exit, if INFO = 0, the eigenvalues in ascending order.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (N-1)
*> On entry, the subdiagonal elements of the tridiagonal matrix.
*> On exit, E has been destroyed.
*> \endverbatim
*>
*> \param[in,out] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension (LDZ,N)
*> On entry, if COMPZ = 'V', then Z contains the orthogonal
*> matrix used in the reduction to tridiagonal form.
*> On exit, if INFO = 0, then if COMPZ = 'V', Z contains the
*> orthonormal eigenvectors of the original symmetric matrix,
*> and if COMPZ = 'I', Z contains the orthonormal eigenvectors
*> of the symmetric tridiagonal matrix.
*> If COMPZ = 'N', then Z is not referenced.
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of the array Z. LDZ >= 1.
*> If eigenvectors are desired, then LDZ >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array,
*> dimension (LWORK)
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> If COMPZ = 'N' or N <= 1 then LWORK must be at least 1.
*> If COMPZ = 'V' and N > 1 then LWORK must be at least
*> ( 1 + 3*N + 2*N*lg N + 4*N**2 ),
*> where lg( N ) = smallest integer k such
*> that 2**k >= N.
*> If COMPZ = 'I' and N > 1 then LWORK must be at least
*> ( 1 + 4*N + N**2 ).
*> Note that for COMPZ = 'I' or 'V', then if N is less than or
*> equal to the minimum divide size, usually 25, then LWORK need
*> only be max(1,2*(N-1)).
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*> \endverbatim
*>
*> \param[in] LIWORK
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK.
*> If COMPZ = 'N' or N <= 1 then LIWORK must be at least 1.
*> If COMPZ = 'V' and N > 1 then LIWORK must be at least
*> ( 6 + 6*N + 5*N*lg N ).
*> If COMPZ = 'I' and N > 1 then LIWORK must be at least
*> ( 3 + 5*N ).
*> Note that for COMPZ = 'I' or 'V', then if N is less than or
*> equal to the minimum divide size, usually 25, then LIWORK
*> need only be 1.
*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the IWORK array,
*> returns this value as the first entry of the IWORK array, and
*> no error message related to LIWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: The algorithm failed to compute an eigenvalue while
*> working on the submatrix lying in rows and columns
*> INFO/(N+1) through mod(INFO,N+1).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup auxOTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> Jeff Rutter, Computer Science Division, University of California
*> at Berkeley, USA \n
*> Modified by Francoise Tisseur, University of Tennessee
*>
* =====================================================================
SUBROUTINE DSTEDC( COMPZ, N, D, E, Z, LDZ, WORK, LWORK, IWORK,
$ LIWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER COMPZ
INTEGER INFO, LDZ, LIWORK, LWORK, N
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION D( * ), E( * ), WORK( * ), Z( LDZ, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY
INTEGER FINISH, I, ICOMPZ, II, J, K, LGN, LIWMIN,
$ LWMIN, M, SMLSIZ, START, STOREZ, STRTRW
DOUBLE PRECISION EPS, ORGNRM, P, TINY
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER ILAENV
DOUBLE PRECISION DLAMCH, DLANST
EXTERNAL LSAME, ILAENV, DLAMCH, DLANST
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DLACPY, DLAED0, DLASCL, DLASET, DLASRT,
$ DSTEQR, DSTERF, DSWAP, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, INT, LOG, MAX, MOD, SQRT
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
*
IF( LSAME( COMPZ, 'N' ) ) THEN
ICOMPZ = 0
ELSE IF( LSAME( COMPZ, 'V' ) ) THEN
ICOMPZ = 1
ELSE IF( LSAME( COMPZ, 'I' ) ) THEN
ICOMPZ = 2
ELSE
ICOMPZ = -1
END IF
IF( ICOMPZ.LT.0 ) THEN
INFO = -1
ELSE IF( N.LT.0 ) THEN
INFO = -2
ELSE IF( ( LDZ.LT.1 ) .OR.
$ ( ICOMPZ.GT.0 .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
INFO = -6
END IF
*
IF( INFO.EQ.0 ) THEN
*
* Compute the workspace requirements
*
SMLSIZ = ILAENV( 9, 'DSTEDC', ' ', 0, 0, 0, 0 )
IF( N.LE.1 .OR. ICOMPZ.EQ.0 ) THEN
LIWMIN = 1
LWMIN = 1
ELSE IF( N.LE.SMLSIZ ) THEN
LIWMIN = 1
LWMIN = 2*( N - 1 )
ELSE
LGN = INT( LOG( DBLE( N ) )/LOG( TWO ) )
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
IF( 2**LGN.LT.N )
$ LGN = LGN + 1
IF( ICOMPZ.EQ.1 ) THEN
LWMIN = 1 + 3*N + 2*N*LGN + 4*N**2
LIWMIN = 6 + 6*N + 5*N*LGN
ELSE IF( ICOMPZ.EQ.2 ) THEN
LWMIN = 1 + 4*N + N**2
LIWMIN = 3 + 5*N
END IF
END IF
WORK( 1 ) = LWMIN
IWORK( 1 ) = LIWMIN
*
IF( LWORK.LT.LWMIN .AND. .NOT. LQUERY ) THEN
INFO = -8
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT. LQUERY ) THEN
INFO = -10
END IF
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DSTEDC', -INFO )
RETURN
ELSE IF (LQUERY) THEN
RETURN
END IF
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
IF( N.EQ.1 ) THEN
IF( ICOMPZ.NE.0 )
$ Z( 1, 1 ) = ONE
RETURN
END IF
*
* If the following conditional clause is removed, then the routine
* will use the Divide and Conquer routine to compute only the
* eigenvalues, which requires (3N + 3N**2) real workspace and
* (2 + 5N + 2N lg(N)) integer workspace.
* Since on many architectures DSTERF is much faster than any other
* algorithm for finding eigenvalues only, it is used here
* as the default. If the conditional clause is removed, then
* information on the size of workspace needs to be changed.
*
* If COMPZ = 'N', use DSTERF to compute the eigenvalues.
*
IF( ICOMPZ.EQ.0 ) THEN
CALL DSTERF( N, D, E, INFO )
GO TO 50
END IF
*
* If N is smaller than the minimum divide size (SMLSIZ+1), then
* solve the problem with another solver.
*
IF( N.LE.SMLSIZ ) THEN
*
CALL DSTEQR( COMPZ, N, D, E, Z, LDZ, WORK, INFO )
*
ELSE
*
* If COMPZ = 'V', the Z matrix must be stored elsewhere for later
* use.
*
IF( ICOMPZ.EQ.1 ) THEN
STOREZ = 1 + N*N
ELSE
STOREZ = 1
END IF
*
IF( ICOMPZ.EQ.2 ) THEN
CALL DLASET( 'Full', N, N, ZERO, ONE, Z, LDZ )
END IF
*
* Scale.
*
ORGNRM = DLANST( 'M', N, D, E )
IF( ORGNRM.EQ.ZERO )
$ GO TO 50
*
EPS = DLAMCH( 'Epsilon' )
*
START = 1
*
* while ( START <= N )
*
10 CONTINUE
IF( START.LE.N ) THEN
*
* Let FINISH be the position of the next subdiagonal entry
* such that E( FINISH ) <= TINY or FINISH = N if no such
* subdiagonal exists. The matrix identified by the elements
* between START and FINISH constitutes an independent
* sub-problem.
*
FINISH = START
20 CONTINUE
IF( FINISH.LT.N ) THEN
TINY = EPS*SQRT( ABS( D( FINISH ) ) )*
$ SQRT( ABS( D( FINISH+1 ) ) )
IF( ABS( E( FINISH ) ).GT.TINY ) THEN
FINISH = FINISH + 1
GO TO 20
END IF
END IF
*
* (Sub) Problem determined. Compute its size and solve it.
*
M = FINISH - START + 1
IF( M.EQ.1 ) THEN
START = FINISH + 1
GO TO 10
END IF
IF( M.GT.SMLSIZ ) THEN
*
* Scale.
*
ORGNRM = DLANST( 'M', M, D( START ), E( START ) )
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M, 1, D( START ), M,
$ INFO )
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, M-1, 1, E( START ),
$ M-1, INFO )
*
IF( ICOMPZ.EQ.1 ) THEN
STRTRW = 1
ELSE
STRTRW = START
END IF
CALL DLAED0( ICOMPZ, N, M, D( START ), E( START ),
$ Z( STRTRW, START ), LDZ, WORK( 1 ), N,
$ WORK( STOREZ ), IWORK, INFO )
IF( INFO.NE.0 ) THEN
INFO = ( INFO / ( M+1 )+START-1 )*( N+1 ) +
$ MOD( INFO, ( M+1 ) ) + START - 1
GO TO 50
END IF
*
* Scale back.
*
CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, M, 1, D( START ), M,
$ INFO )
*
ELSE
IF( ICOMPZ.EQ.1 ) THEN
*
* Since QR won't update a Z matrix which is larger than
* the length of D, we must solve the sub-problem in a
* workspace and then multiply back into Z.
*
CALL DSTEQR( 'I', M, D( START ), E( START ), WORK, M,
$ WORK( M*M+1 ), INFO )
CALL DLACPY( 'A', N, M, Z( 1, START ), LDZ,
$ WORK( STOREZ ), N )
CALL DGEMM( 'N', 'N', N, M, M, ONE,
$ WORK( STOREZ ), N, WORK, M, ZERO,
$ Z( 1, START ), LDZ )
ELSE IF( ICOMPZ.EQ.2 ) THEN
CALL DSTEQR( 'I', M, D( START ), E( START ),
$ Z( START, START ), LDZ, WORK, INFO )
ELSE
CALL DSTERF( M, D( START ), E( START ), INFO )
END IF
IF( INFO.NE.0 ) THEN
INFO = START*( N+1 ) + FINISH
GO TO 50
END IF
END IF
*
START = FINISH + 1
GO TO 10
END IF
*
* endwhile
*
* If the problem split any number of times, then the eigenvalues
* will not be properly ordered. Here we permute the eigenvalues
* (and the associated eigenvectors) into ascending order.
*
IF( M.NE.N ) THEN
IF( ICOMPZ.EQ.0 ) THEN
*
* Use Quick Sort
*
CALL DLASRT( 'I', N, D, INFO )
*
ELSE
*
* Use Selection Sort to minimize swaps of eigenvectors
*
DO 40 II = 2, N
I = II - 1
K = I
P = D( I )
DO 30 J = II, N
IF( D( J ).LT.P ) THEN
K = J
P = D( J )
END IF
30 CONTINUE
IF( K.NE.I ) THEN
D( K ) = D( I )
D( I ) = P
CALL DSWAP( N, Z( 1, I ), 1, Z( 1, K ), 1 )
END IF
40 CONTINUE
END IF
END IF
END IF
*
50 CONTINUE
WORK( 1 ) = LWMIN
IWORK( 1 ) = LIWMIN
*
RETURN
*
* End of DSTEDC
*
END
|