1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
|
*> \brief \b DTPTRI
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DTPTRI + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtptri.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtptri.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtptri.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DTPTRI( UPLO, DIAG, N, AP, INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIAG, UPLO
* INTEGER INFO, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION AP( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DTPTRI computes the inverse of a real upper or lower triangular
*> matrix A stored in packed format.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': A is upper triangular;
*> = 'L': A is lower triangular.
*> \endverbatim
*>
*> \param[in] DIAG
*> \verbatim
*> DIAG is CHARACTER*1
*> = 'N': A is non-unit triangular;
*> = 'U': A is unit triangular.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] AP
*> \verbatim
*> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
*> On entry, the upper or lower triangular matrix A, stored
*> columnwise in a linear array. The j-th column of A is stored
*> in the array AP as follows:
*> if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
*> if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
*> See below for further details.
*> On exit, the (triangular) inverse of the original matrix, in
*> the same packed storage format.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, A(i,i) is exactly zero. The triangular
*> matrix is singular and its inverse can not be computed.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup doubleOTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> A triangular matrix A can be transferred to packed storage using one
*> of the following program segments:
*>
*> UPLO = 'U': UPLO = 'L':
*>
*> JC = 1 JC = 1
*> DO 2 J = 1, N DO 2 J = 1, N
*> DO 1 I = 1, J DO 1 I = J, N
*> AP(JC+I-1) = A(I,J) AP(JC+I-J) = A(I,J)
*> 1 CONTINUE 1 CONTINUE
*> JC = JC + J JC = JC + N - J + 1
*> 2 CONTINUE 2 CONTINUE
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DTPTRI( UPLO, DIAG, N, AP, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER DIAG, UPLO
INTEGER INFO, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION AP( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL NOUNIT, UPPER
INTEGER J, JC, JCLAST, JJ
DOUBLE PRECISION AJJ
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. External Subroutines ..
EXTERNAL DSCAL, DTPMV, XERBLA
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
UPPER = LSAME( UPLO, 'U' )
NOUNIT = LSAME( DIAG, 'N' )
IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
INFO = -1
ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -3
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTPTRI', -INFO )
RETURN
END IF
*
* Check for singularity if non-unit.
*
IF( NOUNIT ) THEN
IF( UPPER ) THEN
JJ = 0
DO 10 INFO = 1, N
JJ = JJ + INFO
IF( AP( JJ ).EQ.ZERO )
$ RETURN
10 CONTINUE
ELSE
JJ = 1
DO 20 INFO = 1, N
IF( AP( JJ ).EQ.ZERO )
$ RETURN
JJ = JJ + N - INFO + 1
20 CONTINUE
END IF
INFO = 0
END IF
*
IF( UPPER ) THEN
*
* Compute inverse of upper triangular matrix.
*
JC = 1
DO 30 J = 1, N
IF( NOUNIT ) THEN
AP( JC+J-1 ) = ONE / AP( JC+J-1 )
AJJ = -AP( JC+J-1 )
ELSE
AJJ = -ONE
END IF
*
* Compute elements 1:j-1 of j-th column.
*
CALL DTPMV( 'Upper', 'No transpose', DIAG, J-1, AP,
$ AP( JC ), 1 )
CALL DSCAL( J-1, AJJ, AP( JC ), 1 )
JC = JC + J
30 CONTINUE
*
ELSE
*
* Compute inverse of lower triangular matrix.
*
JC = N*( N+1 ) / 2
DO 40 J = N, 1, -1
IF( NOUNIT ) THEN
AP( JC ) = ONE / AP( JC )
AJJ = -AP( JC )
ELSE
AJJ = -ONE
END IF
IF( J.LT.N ) THEN
*
* Compute elements j+1:n of j-th column.
*
CALL DTPMV( 'Lower', 'No transpose', DIAG, N-J,
$ AP( JCLAST ), AP( JC+1 ), 1 )
CALL DSCAL( N-J, AJJ, AP( JC+1 ), 1 )
END IF
JCLAST = JC
JC = JC - N + J - 2
40 CONTINUE
END IF
*
RETURN
*
* End of DTPTRI
*
END
|