1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570
|
*> \brief \b DTRSEN
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download DTRSEN + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dtrsen.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dtrsen.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dtrsen.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
* M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER COMPQ, JOB
* INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
* DOUBLE PRECISION S, SEP
* ..
* .. Array Arguments ..
* LOGICAL SELECT( * )
* INTEGER IWORK( * )
* DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
* $ WR( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DTRSEN reorders the real Schur factorization of a real matrix
*> A = Q*T*Q**T, so that a selected cluster of eigenvalues appears in
*> the leading diagonal blocks of the upper quasi-triangular matrix T,
*> and the leading columns of Q form an orthonormal basis of the
*> corresponding right invariant subspace.
*>
*> Optionally the routine computes the reciprocal condition numbers of
*> the cluster of eigenvalues and/or the invariant subspace.
*>
*> T must be in Schur canonical form (as returned by DHSEQR), that is,
*> block upper triangular with 1-by-1 and 2-by-2 diagonal blocks; each
*> 2-by-2 diagonal block has its diagonal elements equal and its
*> off-diagonal elements of opposite sign.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] JOB
*> \verbatim
*> JOB is CHARACTER*1
*> Specifies whether condition numbers are required for the
*> cluster of eigenvalues (S) or the invariant subspace (SEP):
*> = 'N': none;
*> = 'E': for eigenvalues only (S);
*> = 'V': for invariant subspace only (SEP);
*> = 'B': for both eigenvalues and invariant subspace (S and
*> SEP).
*> \endverbatim
*>
*> \param[in] COMPQ
*> \verbatim
*> COMPQ is CHARACTER*1
*> = 'V': update the matrix Q of Schur vectors;
*> = 'N': do not update Q.
*> \endverbatim
*>
*> \param[in] SELECT
*> \verbatim
*> SELECT is LOGICAL array, dimension (N)
*> SELECT specifies the eigenvalues in the selected cluster. To
*> select a real eigenvalue w(j), SELECT(j) must be set to
*> .TRUE.. To select a complex conjugate pair of eigenvalues
*> w(j) and w(j+1), corresponding to a 2-by-2 diagonal block,
*> either SELECT(j) or SELECT(j+1) or both must be set to
*> .TRUE.; a complex conjugate pair of eigenvalues must be
*> either both included in the cluster or both excluded.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix T. N >= 0.
*> \endverbatim
*>
*> \param[in,out] T
*> \verbatim
*> T is DOUBLE PRECISION array, dimension (LDT,N)
*> On entry, the upper quasi-triangular matrix T, in Schur
*> canonical form.
*> On exit, T is overwritten by the reordered matrix T, again in
*> Schur canonical form, with the selected eigenvalues in the
*> leading diagonal blocks.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of the array T. LDT >= max(1,N).
*> \endverbatim
*>
*> \param[in,out] Q
*> \verbatim
*> Q is DOUBLE PRECISION array, dimension (LDQ,N)
*> On entry, if COMPQ = 'V', the matrix Q of Schur vectors.
*> On exit, if COMPQ = 'V', Q has been postmultiplied by the
*> orthogonal transformation matrix which reorders T; the
*> leading M columns of Q form an orthonormal basis for the
*> specified invariant subspace.
*> If COMPQ = 'N', Q is not referenced.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q.
*> LDQ >= 1; and if COMPQ = 'V', LDQ >= N.
*> \endverbatim
*>
*> \param[out] WR
*> \verbatim
*> WR is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*> \param[out] WI
*> \verbatim
*> WI is DOUBLE PRECISION array, dimension (N)
*>
*> The real and imaginary parts, respectively, of the reordered
*> eigenvalues of T. The eigenvalues are stored in the same
*> order as on the diagonal of T, with WR(i) = T(i,i) and, if
*> T(i:i+1,i:i+1) is a 2-by-2 diagonal block, WI(i) > 0 and
*> WI(i+1) = -WI(i). Note that if a complex eigenvalue is
*> sufficiently ill-conditioned, then its value may differ
*> significantly from its value before reordering.
*> \endverbatim
*>
*> \param[out] M
*> \verbatim
*> M is INTEGER
*> The dimension of the specified invariant subspace.
*> 0 < = M <= N.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is DOUBLE PRECISION
*> If JOB = 'E' or 'B', S is a lower bound on the reciprocal
*> condition number for the selected cluster of eigenvalues.
*> S cannot underestimate the true reciprocal condition number
*> by more than a factor of sqrt(N). If M = 0 or N, S = 1.
*> If JOB = 'N' or 'V', S is not referenced.
*> \endverbatim
*>
*> \param[out] SEP
*> \verbatim
*> SEP is DOUBLE PRECISION
*> If JOB = 'V' or 'B', SEP is the estimated reciprocal
*> condition number of the specified invariant subspace. If
*> M = 0 or N, SEP = norm(T).
*> If JOB = 'N' or 'E', SEP is not referenced.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK))
*> On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> If JOB = 'N', LWORK >= max(1,N);
*> if JOB = 'E', LWORK >= max(1,M*(N-M));
*> if JOB = 'V' or 'B', LWORK >= max(1,2*M*(N-M)).
*>
*> If LWORK = -1, then a workspace query is assumed; the routine
*> only calculates the optimal size of the WORK array, returns
*> this value as the first entry of the WORK array, and no error
*> message related to LWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (MAX(1,LIWORK))
*> On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
*> \endverbatim
*>
*> \param[in] LIWORK
*> \verbatim
*> LIWORK is INTEGER
*> The dimension of the array IWORK.
*> If JOB = 'N' or 'E', LIWORK >= 1;
*> if JOB = 'V' or 'B', LIWORK >= max(1,M*(N-M)).
*>
*> If LIWORK = -1, then a workspace query is assumed; the
*> routine only calculates the optimal size of the IWORK array,
*> returns this value as the first entry of the IWORK array, and
*> no error message related to LIWORK is issued by XERBLA.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> = 1: reordering of T failed because some eigenvalues are too
*> close to separate (the problem is very ill-conditioned);
*> T may have been partially reordered, and WR and WI
*> contain the eigenvalues in the same order as in T; S and
*> SEP (if requested) are set to zero.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup doubleOTHERcomputational
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> DTRSEN first collects the selected eigenvalues by computing an
*> orthogonal transformation Z to move them to the top left corner of T.
*> In other words, the selected eigenvalues are the eigenvalues of T11
*> in:
*>
*> Z**T * T * Z = ( T11 T12 ) n1
*> ( 0 T22 ) n2
*> n1 n2
*>
*> where N = n1+n2 and Z**T means the transpose of Z. The first n1 columns
*> of Z span the specified invariant subspace of T.
*>
*> If T has been obtained from the real Schur factorization of a matrix
*> A = Q*T*Q**T, then the reordered real Schur factorization of A is given
*> by A = (Q*Z)*(Z**T*T*Z)*(Q*Z)**T, and the first n1 columns of Q*Z span
*> the corresponding invariant subspace of A.
*>
*> The reciprocal condition number of the average of the eigenvalues of
*> T11 may be returned in S. S lies between 0 (very badly conditioned)
*> and 1 (very well conditioned). It is computed as follows. First we
*> compute R so that
*>
*> P = ( I R ) n1
*> ( 0 0 ) n2
*> n1 n2
*>
*> is the projector on the invariant subspace associated with T11.
*> R is the solution of the Sylvester equation:
*>
*> T11*R - R*T22 = T12.
*>
*> Let F-norm(M) denote the Frobenius-norm of M and 2-norm(M) denote
*> the two-norm of M. Then S is computed as the lower bound
*>
*> (1 + F-norm(R)**2)**(-1/2)
*>
*> on the reciprocal of 2-norm(P), the true reciprocal condition number.
*> S cannot underestimate 1 / 2-norm(P) by more than a factor of
*> sqrt(N).
*>
*> An approximate error bound for the computed average of the
*> eigenvalues of T11 is
*>
*> EPS * norm(T) / S
*>
*> where EPS is the machine precision.
*>
*> The reciprocal condition number of the right invariant subspace
*> spanned by the first n1 columns of Z (or of Q*Z) is returned in SEP.
*> SEP is defined as the separation of T11 and T22:
*>
*> sep( T11, T22 ) = sigma-min( C )
*>
*> where sigma-min(C) is the smallest singular value of the
*> n1*n2-by-n1*n2 matrix
*>
*> C = kprod( I(n2), T11 ) - kprod( transpose(T22), I(n1) )
*>
*> I(m) is an m by m identity matrix, and kprod denotes the Kronecker
*> product. We estimate sigma-min(C) by the reciprocal of an estimate of
*> the 1-norm of inverse(C). The true reciprocal 1-norm of inverse(C)
*> cannot differ from sigma-min(C) by more than a factor of sqrt(n1*n2).
*>
*> When SEP is small, small changes in T can cause large changes in
*> the invariant subspace. An approximate bound on the maximum angular
*> error in the computed right invariant subspace is
*>
*> EPS * norm(T) / SEP
*> \endverbatim
*>
* =====================================================================
SUBROUTINE DTRSEN( JOB, COMPQ, SELECT, N, T, LDT, Q, LDQ, WR, WI,
$ M, S, SEP, WORK, LWORK, IWORK, LIWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* .. Scalar Arguments ..
CHARACTER COMPQ, JOB
INTEGER INFO, LDQ, LDT, LIWORK, LWORK, M, N
DOUBLE PRECISION S, SEP
* ..
* .. Array Arguments ..
LOGICAL SELECT( * )
INTEGER IWORK( * )
DOUBLE PRECISION Q( LDQ, * ), T( LDT, * ), WI( * ), WORK( * ),
$ WR( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LQUERY, PAIR, SWAP, WANTBH, WANTQ, WANTS,
$ WANTSP
INTEGER IERR, K, KASE, KK, KS, LIWMIN, LWMIN, N1, N2,
$ NN
DOUBLE PRECISION EST, RNORM, SCALE
* ..
* .. Local Arrays ..
INTEGER ISAVE( 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLANGE
EXTERNAL LSAME, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DLACN2, DLACPY, DTREXC, DTRSYL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
* Decode and test the input parameters
*
WANTBH = LSAME( JOB, 'B' )
WANTS = LSAME( JOB, 'E' ) .OR. WANTBH
WANTSP = LSAME( JOB, 'V' ) .OR. WANTBH
WANTQ = LSAME( COMPQ, 'V' )
*
INFO = 0
LQUERY = ( LWORK.EQ.-1 )
IF( .NOT.LSAME( JOB, 'N' ) .AND. .NOT.WANTS .AND. .NOT.WANTSP )
$ THEN
INFO = -1
ELSE IF( .NOT.LSAME( COMPQ, 'N' ) .AND. .NOT.WANTQ ) THEN
INFO = -2
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
INFO = -6
ELSE IF( LDQ.LT.1 .OR. ( WANTQ .AND. LDQ.LT.N ) ) THEN
INFO = -8
ELSE
*
* Set M to the dimension of the specified invariant subspace,
* and test LWORK and LIWORK.
*
M = 0
PAIR = .FALSE.
DO 10 K = 1, N
IF( PAIR ) THEN
PAIR = .FALSE.
ELSE
IF( K.LT.N ) THEN
IF( T( K+1, K ).EQ.ZERO ) THEN
IF( SELECT( K ) )
$ M = M + 1
ELSE
PAIR = .TRUE.
IF( SELECT( K ) .OR. SELECT( K+1 ) )
$ M = M + 2
END IF
ELSE
IF( SELECT( N ) )
$ M = M + 1
END IF
END IF
10 CONTINUE
*
N1 = M
N2 = N - M
NN = N1*N2
*
IF( WANTSP ) THEN
LWMIN = MAX( 1, 2*NN )
LIWMIN = MAX( 1, NN )
ELSE IF( LSAME( JOB, 'N' ) ) THEN
LWMIN = MAX( 1, N )
LIWMIN = 1
ELSE IF( LSAME( JOB, 'E' ) ) THEN
LWMIN = MAX( 1, NN )
LIWMIN = 1
END IF
*
IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
INFO = -15
ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
INFO = -17
END IF
END IF
*
IF( INFO.EQ.0 ) THEN
WORK( 1 ) = LWMIN
IWORK( 1 ) = LIWMIN
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DTRSEN', -INFO )
RETURN
ELSE IF( LQUERY ) THEN
RETURN
END IF
*
* Quick return if possible.
*
IF( M.EQ.N .OR. M.EQ.0 ) THEN
IF( WANTS )
$ S = ONE
IF( WANTSP )
$ SEP = DLANGE( '1', N, N, T, LDT, WORK )
GO TO 40
END IF
*
* Collect the selected blocks at the top-left corner of T.
*
KS = 0
PAIR = .FALSE.
DO 20 K = 1, N
IF( PAIR ) THEN
PAIR = .FALSE.
ELSE
SWAP = SELECT( K )
IF( K.LT.N ) THEN
IF( T( K+1, K ).NE.ZERO ) THEN
PAIR = .TRUE.
SWAP = SWAP .OR. SELECT( K+1 )
END IF
END IF
IF( SWAP ) THEN
KS = KS + 1
*
* Swap the K-th block to position KS.
*
IERR = 0
KK = K
IF( K.NE.KS )
$ CALL DTREXC( COMPQ, N, T, LDT, Q, LDQ, KK, KS, WORK,
$ IERR )
IF( IERR.EQ.1 .OR. IERR.EQ.2 ) THEN
*
* Blocks too close to swap: exit.
*
INFO = 1
IF( WANTS )
$ S = ZERO
IF( WANTSP )
$ SEP = ZERO
GO TO 40
END IF
IF( PAIR )
$ KS = KS + 1
END IF
END IF
20 CONTINUE
*
IF( WANTS ) THEN
*
* Solve Sylvester equation for R:
*
* T11*R - R*T22 = scale*T12
*
CALL DLACPY( 'F', N1, N2, T( 1, N1+1 ), LDT, WORK, N1 )
CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT, T( N1+1, N1+1 ),
$ LDT, WORK, N1, SCALE, IERR )
*
* Estimate the reciprocal of the condition number of the cluster
* of eigenvalues.
*
RNORM = DLANGE( 'F', N1, N2, WORK, N1, WORK )
IF( RNORM.EQ.ZERO ) THEN
S = ONE
ELSE
S = SCALE / ( SQRT( SCALE*SCALE / RNORM+RNORM )*
$ SQRT( RNORM ) )
END IF
END IF
*
IF( WANTSP ) THEN
*
* Estimate sep(T11,T22).
*
EST = ZERO
KASE = 0
30 CONTINUE
CALL DLACN2( NN, WORK( NN+1 ), WORK, IWORK, EST, KASE, ISAVE )
IF( KASE.NE.0 ) THEN
IF( KASE.EQ.1 ) THEN
*
* Solve T11*R - R*T22 = scale*X.
*
CALL DTRSYL( 'N', 'N', -1, N1, N2, T, LDT,
$ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
$ IERR )
ELSE
*
* Solve T11**T*R - R*T22**T = scale*X.
*
CALL DTRSYL( 'T', 'T', -1, N1, N2, T, LDT,
$ T( N1+1, N1+1 ), LDT, WORK, N1, SCALE,
$ IERR )
END IF
GO TO 30
END IF
*
SEP = SCALE / EST
END IF
*
40 CONTINUE
*
* Store the output eigenvalues in WR and WI.
*
DO 50 K = 1, N
WR( K ) = T( K, K )
WI( K ) = ZERO
50 CONTINUE
DO 60 K = 1, N - 1
IF( T( K+1, K ).NE.ZERO ) THEN
WI( K ) = SQRT( ABS( T( K, K+1 ) ) )*
$ SQRT( ABS( T( K+1, K ) ) )
WI( K+1 ) = -WI( K )
END IF
60 CONTINUE
*
WORK( 1 ) = LWMIN
IWORK( 1 ) = LIWMIN
*
RETURN
*
* End of DTRSEN
*
END
|