1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333
|
*> \brief \b SGTSV
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download SGTSV + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtsv.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtsv.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtsv.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE SGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
* REAL B( LDB, * ), D( * ), DL( * ), DU( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SGTSV solves the equation
*>
*> A*X = B,
*>
*> where A is an n by n tridiagonal matrix, by Gaussian elimination with
*> partial pivoting.
*>
*> Note that the equation A**T*X = B may be solved by interchanging the
*> order of the arguments DU and DL.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrix B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in,out] DL
*> \verbatim
*> DL is REAL array, dimension (N-1)
*> On entry, DL must contain the (n-1) sub-diagonal elements of
*> A.
*>
*> On exit, DL is overwritten by the (n-2) elements of the
*> second super-diagonal of the upper triangular matrix U from
*> the LU factorization of A, in DL(1), ..., DL(n-2).
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is REAL array, dimension (N)
*> On entry, D must contain the diagonal elements of A.
*>
*> On exit, D is overwritten by the n diagonal elements of U.
*> \endverbatim
*>
*> \param[in,out] DU
*> \verbatim
*> DU is REAL array, dimension (N-1)
*> On entry, DU must contain the (n-1) super-diagonal elements
*> of A.
*>
*> On exit, DU is overwritten by the (n-1) elements of the first
*> super-diagonal of U.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is REAL array, dimension (LDB,NRHS)
*> On entry, the N by NRHS matrix of right hand side matrix B.
*> On exit, if INFO = 0, the N by NRHS solution matrix X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: if INFO = i, U(i,i) is exactly zero, and the solution
*> has not been computed. The factorization has not been
*> completed unless i = N.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup realOTHERcomputational
*
* =====================================================================
SUBROUTINE SGTSV( N, NRHS, DL, D, DU, B, LDB, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDB, N, NRHS
* ..
* .. Array Arguments ..
REAL B( LDB, * ), D( * ), DL( * ), DU( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
REAL FACT, TEMP
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. External Subroutines ..
EXTERNAL XERBLA
* ..
* .. Executable Statements ..
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( NRHS.LT.0 ) THEN
INFO = -2
ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
INFO = -7
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'SGTSV ', -INFO )
RETURN
END IF
*
IF( N.EQ.0 )
$ RETURN
*
IF( NRHS.EQ.1 ) THEN
DO 10 I = 1, N - 2
IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
*
* No row interchange required
*
IF( D( I ).NE.ZERO ) THEN
FACT = DL( I ) / D( I )
D( I+1 ) = D( I+1 ) - FACT*DU( I )
B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
ELSE
INFO = I
RETURN
END IF
DL( I ) = ZERO
ELSE
*
* Interchange rows I and I+1
*
FACT = D( I ) / DL( I )
D( I ) = DL( I )
TEMP = D( I+1 )
D( I+1 ) = DU( I ) - FACT*TEMP
DL( I ) = DU( I+1 )
DU( I+1 ) = -FACT*DL( I )
DU( I ) = TEMP
TEMP = B( I, 1 )
B( I, 1 ) = B( I+1, 1 )
B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
END IF
10 CONTINUE
IF( N.GT.1 ) THEN
I = N - 1
IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
IF( D( I ).NE.ZERO ) THEN
FACT = DL( I ) / D( I )
D( I+1 ) = D( I+1 ) - FACT*DU( I )
B( I+1, 1 ) = B( I+1, 1 ) - FACT*B( I, 1 )
ELSE
INFO = I
RETURN
END IF
ELSE
FACT = D( I ) / DL( I )
D( I ) = DL( I )
TEMP = D( I+1 )
D( I+1 ) = DU( I ) - FACT*TEMP
DU( I ) = TEMP
TEMP = B( I, 1 )
B( I, 1 ) = B( I+1, 1 )
B( I+1, 1 ) = TEMP - FACT*B( I+1, 1 )
END IF
END IF
IF( D( N ).EQ.ZERO ) THEN
INFO = N
RETURN
END IF
ELSE
DO 40 I = 1, N - 2
IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
*
* No row interchange required
*
IF( D( I ).NE.ZERO ) THEN
FACT = DL( I ) / D( I )
D( I+1 ) = D( I+1 ) - FACT*DU( I )
DO 20 J = 1, NRHS
B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
20 CONTINUE
ELSE
INFO = I
RETURN
END IF
DL( I ) = ZERO
ELSE
*
* Interchange rows I and I+1
*
FACT = D( I ) / DL( I )
D( I ) = DL( I )
TEMP = D( I+1 )
D( I+1 ) = DU( I ) - FACT*TEMP
DL( I ) = DU( I+1 )
DU( I+1 ) = -FACT*DL( I )
DU( I ) = TEMP
DO 30 J = 1, NRHS
TEMP = B( I, J )
B( I, J ) = B( I+1, J )
B( I+1, J ) = TEMP - FACT*B( I+1, J )
30 CONTINUE
END IF
40 CONTINUE
IF( N.GT.1 ) THEN
I = N - 1
IF( ABS( D( I ) ).GE.ABS( DL( I ) ) ) THEN
IF( D( I ).NE.ZERO ) THEN
FACT = DL( I ) / D( I )
D( I+1 ) = D( I+1 ) - FACT*DU( I )
DO 50 J = 1, NRHS
B( I+1, J ) = B( I+1, J ) - FACT*B( I, J )
50 CONTINUE
ELSE
INFO = I
RETURN
END IF
ELSE
FACT = D( I ) / DL( I )
D( I ) = DL( I )
TEMP = D( I+1 )
D( I+1 ) = DU( I ) - FACT*TEMP
DU( I ) = TEMP
DO 60 J = 1, NRHS
TEMP = B( I, J )
B( I, J ) = B( I+1, J )
B( I+1, J ) = TEMP - FACT*B( I+1, J )
60 CONTINUE
END IF
END IF
IF( D( N ).EQ.ZERO ) THEN
INFO = N
RETURN
END IF
END IF
*
* Back solve with the matrix U from the factorization.
*
IF( NRHS.LE.2 ) THEN
J = 1
70 CONTINUE
B( N, J ) = B( N, J ) / D( N )
IF( N.GT.1 )
$ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) / D( N-1 )
DO 80 I = N - 2, 1, -1
B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
$ B( I+2, J ) ) / D( I )
80 CONTINUE
IF( J.LT.NRHS ) THEN
J = J + 1
GO TO 70
END IF
ELSE
DO 100 J = 1, NRHS
B( N, J ) = B( N, J ) / D( N )
IF( N.GT.1 )
$ B( N-1, J ) = ( B( N-1, J )-DU( N-1 )*B( N, J ) ) /
$ D( N-1 )
DO 90 I = N - 2, 1, -1
B( I, J ) = ( B( I, J )-DU( I )*B( I+1, J )-DL( I )*
$ B( I+2, J ) ) / D( I )
90 CONTINUE
100 CONTINUE
END IF
*
RETURN
*
* End of SGTSV
*
END
|