1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
|
*> \brief \b ZLALSD
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
*> \htmlonly
*> Download ZLALSD + dependencies
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlalsd.f">
*> [TGZ]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlalsd.f">
*> [ZIP]</a>
*> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlalsd.f">
*> [TXT]</a>
*> \endhtmlonly
*
* Definition:
* ===========
*
* SUBROUTINE ZLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
* RANK, WORK, RWORK, IWORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ
* DOUBLE PRECISION RCOND
* ..
* .. Array Arguments ..
* INTEGER IWORK( * )
* DOUBLE PRECISION D( * ), E( * ), RWORK( * )
* COMPLEX*16 B( LDB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZLALSD uses the singular value decomposition of A to solve the least
*> squares problem of finding X to minimize the Euclidean norm of each
*> column of A*X-B, where A is N-by-N upper bidiagonal, and X and B
*> are N-by-NRHS. The solution X overwrites B.
*>
*> The singular values of A smaller than RCOND times the largest
*> singular value are treated as zero in solving the least squares
*> problem; in this case a minimum norm solution is returned.
*> The actual singular values are returned in D in ascending order.
*>
*> This code makes very mild assumptions about floating point
*> arithmetic. It will work on machines with a guard digit in
*> add/subtract, or on those binary machines without guard digits
*> which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2.
*> It could conceivably fail on hexadecimal or decimal machines
*> without guard digits, but we know of none.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> = 'U': D and E define an upper bidiagonal matrix.
*> = 'L': D and E define a lower bidiagonal matrix.
*> \endverbatim
*>
*> \param[in] SMLSIZ
*> \verbatim
*> SMLSIZ is INTEGER
*> The maximum size of the subproblems at the bottom of the
*> computation tree.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The dimension of the bidiagonal matrix. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns of B. NRHS must be at least 1.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> On entry D contains the main diagonal of the bidiagonal
*> matrix. On exit, if INFO = 0, D contains its singular values.
*> \endverbatim
*>
*> \param[in,out] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (N-1)
*> Contains the super-diagonal entries of the bidiagonal matrix.
*> On exit, E has been destroyed.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (LDB,NRHS)
*> On input, B contains the right hand sides of the least
*> squares problem. On output, B contains the solution X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B in the calling subprogram.
*> LDB must be at least max(1,N).
*> \endverbatim
*>
*> \param[in] RCOND
*> \verbatim
*> RCOND is DOUBLE PRECISION
*> The singular values of A less than or equal to RCOND times
*> the largest singular value are treated as zero in solving
*> the least squares problem. If RCOND is negative,
*> machine precision is used instead.
*> For example, if diag(S)*X=B were the least squares problem,
*> where diag(S) is a diagonal matrix of singular values, the
*> solution would be X(i) = B(i) / S(i) if S(i) is greater than
*> RCOND*max(S), and X(i) = 0 if S(i) is less than or equal to
*> RCOND*max(S).
*> \endverbatim
*>
*> \param[out] RANK
*> \verbatim
*> RANK is INTEGER
*> The number of singular values of A greater than RCOND times
*> the largest singular value.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension at least
*> (N * NRHS).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension at least
*> (9*N + 2*N*SMLSIZ + 8*N*NLVL + 3*SMLSIZ*NRHS +
*> MAX( (SMLSIZ+1)**2, N*(1+NRHS) + 2*NRHS ),
*> where
*> NLVL = MAX( 0, INT( LOG_2( MIN( M,N )/(SMLSIZ+1) ) ) + 1 )
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension at least
*> (3*N*NLVL + 11*N).
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit.
*> < 0: if INFO = -i, the i-th argument had an illegal value.
*> > 0: The algorithm failed to compute a singular value while
*> working on the submatrix lying in rows and columns
*> INFO/(N+1) through MOD(INFO,N+1).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16OTHERcomputational
*
*> \par Contributors:
* ==================
*>
*> Ming Gu and Ren-Cang Li, Computer Science Division, University of
*> California at Berkeley, USA \n
*> Osni Marques, LBNL/NERSC, USA \n
*
* =====================================================================
SUBROUTINE ZLALSD( UPLO, SMLSIZ, N, NRHS, D, E, B, LDB, RCOND,
$ RANK, WORK, RWORK, IWORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INFO, LDB, N, NRHS, RANK, SMLSIZ
DOUBLE PRECISION RCOND
* ..
* .. Array Arguments ..
INTEGER IWORK( * )
DOUBLE PRECISION D( * ), E( * ), RWORK( * )
COMPLEX*16 B( LDB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TWO
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TWO = 2.0D0 )
COMPLEX*16 CZERO
PARAMETER ( CZERO = ( 0.0D0, 0.0D0 ) )
* ..
* .. Local Scalars ..
INTEGER BX, BXST, C, DIFL, DIFR, GIVCOL, GIVNUM,
$ GIVPTR, I, ICMPQ1, ICMPQ2, IRWB, IRWIB, IRWRB,
$ IRWU, IRWVT, IRWWRK, IWK, J, JCOL, JIMAG,
$ JREAL, JROW, K, NLVL, NM1, NRWORK, NSIZE, NSUB,
$ PERM, POLES, S, SIZEI, SMLSZP, SQRE, ST, ST1,
$ U, VT, Z
DOUBLE PRECISION CS, EPS, ORGNRM, RCND, R, SN, TOL
* ..
* .. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DLAMCH, DLANST
EXTERNAL IDAMAX, DLAMCH, DLANST
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DLARTG, DLASCL, DLASDA, DLASDQ, DLASET,
$ DLASRT, XERBLA, ZCOPY, ZDROT, ZLACPY, ZLALSA,
$ ZLASCL, ZLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, DCMPLX, DIMAG, INT, LOG, SIGN
* ..
* .. Executable Statements ..
*
* Test the input parameters.
*
INFO = 0
*
IF( N.LT.0 ) THEN
INFO = -3
ELSE IF( NRHS.LT.1 ) THEN
INFO = -4
ELSE IF( ( LDB.LT.1 ) .OR. ( LDB.LT.N ) ) THEN
INFO = -8
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'ZLALSD', -INFO )
RETURN
END IF
*
EPS = DLAMCH( 'Epsilon' )
*
* Set up the tolerance.
*
IF( ( RCOND.LE.ZERO ) .OR. ( RCOND.GE.ONE ) ) THEN
RCND = EPS
ELSE
RCND = RCOND
END IF
*
RANK = 0
*
* Quick return if possible.
*
IF( N.EQ.0 ) THEN
RETURN
ELSE IF( N.EQ.1 ) THEN
IF( D( 1 ).EQ.ZERO ) THEN
CALL ZLASET( 'A', 1, NRHS, CZERO, CZERO, B, LDB )
ELSE
RANK = 1
CALL ZLASCL( 'G', 0, 0, D( 1 ), ONE, 1, NRHS, B, LDB, INFO )
D( 1 ) = ABS( D( 1 ) )
END IF
RETURN
END IF
*
* Rotate the matrix if it is lower bidiagonal.
*
IF( UPLO.EQ.'L' ) THEN
DO 10 I = 1, N - 1
CALL DLARTG( D( I ), E( I ), CS, SN, R )
D( I ) = R
E( I ) = SN*D( I+1 )
D( I+1 ) = CS*D( I+1 )
IF( NRHS.EQ.1 ) THEN
CALL ZDROT( 1, B( I, 1 ), 1, B( I+1, 1 ), 1, CS, SN )
ELSE
RWORK( I*2-1 ) = CS
RWORK( I*2 ) = SN
END IF
10 CONTINUE
IF( NRHS.GT.1 ) THEN
DO 30 I = 1, NRHS
DO 20 J = 1, N - 1
CS = RWORK( J*2-1 )
SN = RWORK( J*2 )
CALL ZDROT( 1, B( J, I ), 1, B( J+1, I ), 1, CS, SN )
20 CONTINUE
30 CONTINUE
END IF
END IF
*
* Scale.
*
NM1 = N - 1
ORGNRM = DLANST( 'M', N, D, E )
IF( ORGNRM.EQ.ZERO ) THEN
CALL ZLASET( 'A', N, NRHS, CZERO, CZERO, B, LDB )
RETURN
END IF
*
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, N, 1, D, N, INFO )
CALL DLASCL( 'G', 0, 0, ORGNRM, ONE, NM1, 1, E, NM1, INFO )
*
* If N is smaller than the minimum divide size SMLSIZ, then solve
* the problem with another solver.
*
IF( N.LE.SMLSIZ ) THEN
IRWU = 1
IRWVT = IRWU + N*N
IRWWRK = IRWVT + N*N
IRWRB = IRWWRK
IRWIB = IRWRB + N*NRHS
IRWB = IRWIB + N*NRHS
CALL DLASET( 'A', N, N, ZERO, ONE, RWORK( IRWU ), N )
CALL DLASET( 'A', N, N, ZERO, ONE, RWORK( IRWVT ), N )
CALL DLASDQ( 'U', 0, N, N, N, 0, D, E, RWORK( IRWVT ), N,
$ RWORK( IRWU ), N, RWORK( IRWWRK ), 1,
$ RWORK( IRWWRK ), INFO )
IF( INFO.NE.0 ) THEN
RETURN
END IF
*
* In the real version, B is passed to DLASDQ and multiplied
* internally by Q**H. Here B is complex and that product is
* computed below in two steps (real and imaginary parts).
*
J = IRWB - 1
DO 50 JCOL = 1, NRHS
DO 40 JROW = 1, N
J = J + 1
RWORK( J ) = DBLE( B( JROW, JCOL ) )
40 CONTINUE
50 CONTINUE
CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWU ), N,
$ RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
J = IRWB - 1
DO 70 JCOL = 1, NRHS
DO 60 JROW = 1, N
J = J + 1
RWORK( J ) = DIMAG( B( JROW, JCOL ) )
60 CONTINUE
70 CONTINUE
CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWU ), N,
$ RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
JREAL = IRWRB - 1
JIMAG = IRWIB - 1
DO 90 JCOL = 1, NRHS
DO 80 JROW = 1, N
JREAL = JREAL + 1
JIMAG = JIMAG + 1
B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
$ RWORK( JIMAG ) )
80 CONTINUE
90 CONTINUE
*
TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
DO 100 I = 1, N
IF( D( I ).LE.TOL ) THEN
CALL ZLASET( 'A', 1, NRHS, CZERO, CZERO, B( I, 1 ), LDB )
ELSE
CALL ZLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS, B( I, 1 ),
$ LDB, INFO )
RANK = RANK + 1
END IF
100 CONTINUE
*
* Since B is complex, the following call to DGEMM is performed
* in two steps (real and imaginary parts). That is for V * B
* (in the real version of the code V**H is stored in WORK).
*
* CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, WORK, N, B, LDB, ZERO,
* $ WORK( NWORK ), N )
*
J = IRWB - 1
DO 120 JCOL = 1, NRHS
DO 110 JROW = 1, N
J = J + 1
RWORK( J ) = DBLE( B( JROW, JCOL ) )
110 CONTINUE
120 CONTINUE
CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
$ RWORK( IRWB ), N, ZERO, RWORK( IRWRB ), N )
J = IRWB - 1
DO 140 JCOL = 1, NRHS
DO 130 JROW = 1, N
J = J + 1
RWORK( J ) = DIMAG( B( JROW, JCOL ) )
130 CONTINUE
140 CONTINUE
CALL DGEMM( 'T', 'N', N, NRHS, N, ONE, RWORK( IRWVT ), N,
$ RWORK( IRWB ), N, ZERO, RWORK( IRWIB ), N )
JREAL = IRWRB - 1
JIMAG = IRWIB - 1
DO 160 JCOL = 1, NRHS
DO 150 JROW = 1, N
JREAL = JREAL + 1
JIMAG = JIMAG + 1
B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
$ RWORK( JIMAG ) )
150 CONTINUE
160 CONTINUE
*
* Unscale.
*
CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
CALL DLASRT( 'D', N, D, INFO )
CALL ZLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
*
RETURN
END IF
*
* Book-keeping and setting up some constants.
*
NLVL = INT( LOG( DBLE( N ) / DBLE( SMLSIZ+1 ) ) / LOG( TWO ) ) + 1
*
SMLSZP = SMLSIZ + 1
*
U = 1
VT = 1 + SMLSIZ*N
DIFL = VT + SMLSZP*N
DIFR = DIFL + NLVL*N
Z = DIFR + NLVL*N*2
C = Z + NLVL*N
S = C + N
POLES = S + N
GIVNUM = POLES + 2*NLVL*N
NRWORK = GIVNUM + 2*NLVL*N
BX = 1
*
IRWRB = NRWORK
IRWIB = IRWRB + SMLSIZ*NRHS
IRWB = IRWIB + SMLSIZ*NRHS
*
SIZEI = 1 + N
K = SIZEI + N
GIVPTR = K + N
PERM = GIVPTR + N
GIVCOL = PERM + NLVL*N
IWK = GIVCOL + NLVL*N*2
*
ST = 1
SQRE = 0
ICMPQ1 = 1
ICMPQ2 = 0
NSUB = 0
*
DO 170 I = 1, N
IF( ABS( D( I ) ).LT.EPS ) THEN
D( I ) = SIGN( EPS, D( I ) )
END IF
170 CONTINUE
*
DO 240 I = 1, NM1
IF( ( ABS( E( I ) ).LT.EPS ) .OR. ( I.EQ.NM1 ) ) THEN
NSUB = NSUB + 1
IWORK( NSUB ) = ST
*
* Subproblem found. First determine its size and then
* apply divide and conquer on it.
*
IF( I.LT.NM1 ) THEN
*
* A subproblem with E(I) small for I < NM1.
*
NSIZE = I - ST + 1
IWORK( SIZEI+NSUB-1 ) = NSIZE
ELSE IF( ABS( E( I ) ).GE.EPS ) THEN
*
* A subproblem with E(NM1) not too small but I = NM1.
*
NSIZE = N - ST + 1
IWORK( SIZEI+NSUB-1 ) = NSIZE
ELSE
*
* A subproblem with E(NM1) small. This implies an
* 1-by-1 subproblem at D(N), which is not solved
* explicitly.
*
NSIZE = I - ST + 1
IWORK( SIZEI+NSUB-1 ) = NSIZE
NSUB = NSUB + 1
IWORK( NSUB ) = N
IWORK( SIZEI+NSUB-1 ) = 1
CALL ZCOPY( NRHS, B( N, 1 ), LDB, WORK( BX+NM1 ), N )
END IF
ST1 = ST - 1
IF( NSIZE.EQ.1 ) THEN
*
* This is a 1-by-1 subproblem and is not solved
* explicitly.
*
CALL ZCOPY( NRHS, B( ST, 1 ), LDB, WORK( BX+ST1 ), N )
ELSE IF( NSIZE.LE.SMLSIZ ) THEN
*
* This is a small subproblem and is solved by DLASDQ.
*
CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
$ RWORK( VT+ST1 ), N )
CALL DLASET( 'A', NSIZE, NSIZE, ZERO, ONE,
$ RWORK( U+ST1 ), N )
CALL DLASDQ( 'U', 0, NSIZE, NSIZE, NSIZE, 0, D( ST ),
$ E( ST ), RWORK( VT+ST1 ), N, RWORK( U+ST1 ),
$ N, RWORK( NRWORK ), 1, RWORK( NRWORK ),
$ INFO )
IF( INFO.NE.0 ) THEN
RETURN
END IF
*
* In the real version, B is passed to DLASDQ and multiplied
* internally by Q**H. Here B is complex and that product is
* computed below in two steps (real and imaginary parts).
*
J = IRWB - 1
DO 190 JCOL = 1, NRHS
DO 180 JROW = ST, ST + NSIZE - 1
J = J + 1
RWORK( J ) = DBLE( B( JROW, JCOL ) )
180 CONTINUE
190 CONTINUE
CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
$ RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
$ ZERO, RWORK( IRWRB ), NSIZE )
J = IRWB - 1
DO 210 JCOL = 1, NRHS
DO 200 JROW = ST, ST + NSIZE - 1
J = J + 1
RWORK( J ) = DIMAG( B( JROW, JCOL ) )
200 CONTINUE
210 CONTINUE
CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
$ RWORK( U+ST1 ), N, RWORK( IRWB ), NSIZE,
$ ZERO, RWORK( IRWIB ), NSIZE )
JREAL = IRWRB - 1
JIMAG = IRWIB - 1
DO 230 JCOL = 1, NRHS
DO 220 JROW = ST, ST + NSIZE - 1
JREAL = JREAL + 1
JIMAG = JIMAG + 1
B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
$ RWORK( JIMAG ) )
220 CONTINUE
230 CONTINUE
*
CALL ZLACPY( 'A', NSIZE, NRHS, B( ST, 1 ), LDB,
$ WORK( BX+ST1 ), N )
ELSE
*
* A large problem. Solve it using divide and conquer.
*
CALL DLASDA( ICMPQ1, SMLSIZ, NSIZE, SQRE, D( ST ),
$ E( ST ), RWORK( U+ST1 ), N, RWORK( VT+ST1 ),
$ IWORK( K+ST1 ), RWORK( DIFL+ST1 ),
$ RWORK( DIFR+ST1 ), RWORK( Z+ST1 ),
$ RWORK( POLES+ST1 ), IWORK( GIVPTR+ST1 ),
$ IWORK( GIVCOL+ST1 ), N, IWORK( PERM+ST1 ),
$ RWORK( GIVNUM+ST1 ), RWORK( C+ST1 ),
$ RWORK( S+ST1 ), RWORK( NRWORK ),
$ IWORK( IWK ), INFO )
IF( INFO.NE.0 ) THEN
RETURN
END IF
BXST = BX + ST1
CALL ZLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, B( ST, 1 ),
$ LDB, WORK( BXST ), N, RWORK( U+ST1 ), N,
$ RWORK( VT+ST1 ), IWORK( K+ST1 ),
$ RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
$ RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
$ IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
$ IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
$ RWORK( C+ST1 ), RWORK( S+ST1 ),
$ RWORK( NRWORK ), IWORK( IWK ), INFO )
IF( INFO.NE.0 ) THEN
RETURN
END IF
END IF
ST = I + 1
END IF
240 CONTINUE
*
* Apply the singular values and treat the tiny ones as zero.
*
TOL = RCND*ABS( D( IDAMAX( N, D, 1 ) ) )
*
DO 250 I = 1, N
*
* Some of the elements in D can be negative because 1-by-1
* subproblems were not solved explicitly.
*
IF( ABS( D( I ) ).LE.TOL ) THEN
CALL ZLASET( 'A', 1, NRHS, CZERO, CZERO, WORK( BX+I-1 ), N )
ELSE
RANK = RANK + 1
CALL ZLASCL( 'G', 0, 0, D( I ), ONE, 1, NRHS,
$ WORK( BX+I-1 ), N, INFO )
END IF
D( I ) = ABS( D( I ) )
250 CONTINUE
*
* Now apply back the right singular vectors.
*
ICMPQ2 = 1
DO 320 I = 1, NSUB
ST = IWORK( I )
ST1 = ST - 1
NSIZE = IWORK( SIZEI+I-1 )
BXST = BX + ST1
IF( NSIZE.EQ.1 ) THEN
CALL ZCOPY( NRHS, WORK( BXST ), N, B( ST, 1 ), LDB )
ELSE IF( NSIZE.LE.SMLSIZ ) THEN
*
* Since B and BX are complex, the following call to DGEMM
* is performed in two steps (real and imaginary parts).
*
* CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
* $ RWORK( VT+ST1 ), N, RWORK( BXST ), N, ZERO,
* $ B( ST, 1 ), LDB )
*
J = BXST - N - 1
JREAL = IRWB - 1
DO 270 JCOL = 1, NRHS
J = J + N
DO 260 JROW = 1, NSIZE
JREAL = JREAL + 1
RWORK( JREAL ) = DBLE( WORK( J+JROW ) )
260 CONTINUE
270 CONTINUE
CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
$ RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
$ RWORK( IRWRB ), NSIZE )
J = BXST - N - 1
JIMAG = IRWB - 1
DO 290 JCOL = 1, NRHS
J = J + N
DO 280 JROW = 1, NSIZE
JIMAG = JIMAG + 1
RWORK( JIMAG ) = DIMAG( WORK( J+JROW ) )
280 CONTINUE
290 CONTINUE
CALL DGEMM( 'T', 'N', NSIZE, NRHS, NSIZE, ONE,
$ RWORK( VT+ST1 ), N, RWORK( IRWB ), NSIZE, ZERO,
$ RWORK( IRWIB ), NSIZE )
JREAL = IRWRB - 1
JIMAG = IRWIB - 1
DO 310 JCOL = 1, NRHS
DO 300 JROW = ST, ST + NSIZE - 1
JREAL = JREAL + 1
JIMAG = JIMAG + 1
B( JROW, JCOL ) = DCMPLX( RWORK( JREAL ),
$ RWORK( JIMAG ) )
300 CONTINUE
310 CONTINUE
ELSE
CALL ZLALSA( ICMPQ2, SMLSIZ, NSIZE, NRHS, WORK( BXST ), N,
$ B( ST, 1 ), LDB, RWORK( U+ST1 ), N,
$ RWORK( VT+ST1 ), IWORK( K+ST1 ),
$ RWORK( DIFL+ST1 ), RWORK( DIFR+ST1 ),
$ RWORK( Z+ST1 ), RWORK( POLES+ST1 ),
$ IWORK( GIVPTR+ST1 ), IWORK( GIVCOL+ST1 ), N,
$ IWORK( PERM+ST1 ), RWORK( GIVNUM+ST1 ),
$ RWORK( C+ST1 ), RWORK( S+ST1 ),
$ RWORK( NRWORK ), IWORK( IWK ), INFO )
IF( INFO.NE.0 ) THEN
RETURN
END IF
END IF
320 CONTINUE
*
* Unscale and sort the singular values.
*
CALL DLASCL( 'G', 0, 0, ONE, ORGNRM, N, 1, D, N, INFO )
CALL DLASRT( 'D', N, D, INFO )
CALL ZLASCL( 'G', 0, 0, ORGNRM, ONE, N, NRHS, B, LDB, INFO )
*
RETURN
*
* End of ZLALSD
*
END
|