1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
*> \brief \b CGET10
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CGET10( M, N, A, LDA, B, LDB, WORK, RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDB, M, N
* REAL RESULT
* ..
* .. Array Arguments ..
* REAL RWORK( * )
* COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGET10 compares two matrices A and B and computes the ratio
*> RESULT = norm( A - B ) / ( norm(A) * M * EPS )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrices A and B.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrices A and B.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The m by n matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,N)
*> The m by n matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (M)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is COMPLEX array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL
*> RESULT = norm( A - B ) / ( norm(A) * M * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CGET10( M, N, A, LDA, B, LDB, WORK, RWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, M, N
REAL RESULT
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX A( LDA, * ), B( LDB, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER J
REAL ANORM, EPS, UNFL, WNORM
* ..
* .. External Functions ..
REAL SCASUM, SLAMCH, CLANGE
EXTERNAL SCASUM, SLAMCH, CLANGE
* ..
* .. External Subroutines ..
EXTERNAL CAXPY, CCOPY
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 ) THEN
RESULT = ZERO
RETURN
END IF
*
UNFL = SLAMCH( 'Safe minimum' )
EPS = SLAMCH( 'Precision' )
*
WNORM = ZERO
DO 10 J = 1, N
CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
CALL CAXPY( M, CMPLX( -ONE ), B( 1, J ), 1, WORK, 1 )
WNORM = MAX( WNORM, SCASUM( N, WORK, 1 ) )
10 CONTINUE
*
ANORM = MAX( CLANGE( '1', M, N, A, LDA, RWORK ), UNFL )
*
IF( ANORM.GT.WNORM ) THEN
RESULT = ( WNORM / ANORM ) / ( M*EPS )
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT = ( MIN( WNORM, M*ANORM ) / ANORM ) / ( M*EPS )
ELSE
RESULT = MIN( WNORM / ANORM, REAL( M ) ) / ( M*EPS )
END IF
END IF
*
RETURN
*
* End of CGET10
*
END
|