1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
|
*> \brief \b CLARFY
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CLARFY( UPLO, N, V, INCV, TAU, C, LDC, WORK )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER INCV, LDC, N
* COMPLEX TAU
* ..
* .. Array Arguments ..
* COMPLEX C( LDC, * ), V( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLARFY applies an elementary reflector, or Householder matrix, H,
*> to an n x n Hermitian matrix C, from both the left and the right.
*>
*> H is represented in the form
*>
*> H = I - tau * v * v'
*>
*> where tau is a scalar and v is a vector.
*>
*> If tau is zero, then H is taken to be the unit matrix.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> Hermitian matrix C is stored.
*> = 'U': Upper triangle
*> = 'L': Lower triangle
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix C. N >= 0.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is COMPLEX array, dimension
*> (1 + (N-1)*abs(INCV))
*> The vector v as described above.
*> \endverbatim
*>
*> \param[in] INCV
*> \verbatim
*> INCV is INTEGER
*> The increment between successive elements of v. INCV must
*> not be zero.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is COMPLEX
*> The value tau as described above.
*> \endverbatim
*>
*> \param[in,out] C
*> \verbatim
*> C is COMPLEX array, dimension (LDC, N)
*> On entry, the matrix C.
*> On exit, C is overwritten by H * C * H'.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max( 1, N ).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (N)
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CLARFY( UPLO, N, V, INCV, TAU, C, LDC, WORK )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER INCV, LDC, N
COMPLEX TAU
* ..
* .. Array Arguments ..
COMPLEX C( LDC, * ), V( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ONE, ZERO, HALF
PARAMETER ( ONE = ( 1.0E+0, 0.0E+0 ),
$ ZERO = ( 0.0E+0, 0.0E+0 ),
$ HALF = ( 0.5E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
COMPLEX ALPHA
* ..
* .. External Subroutines ..
EXTERNAL CAXPY, CHEMV, CHER2
* ..
* .. External Functions ..
COMPLEX CDOTC
EXTERNAL CDOTC
* ..
* .. Executable Statements ..
*
IF( TAU.EQ.ZERO )
$ RETURN
*
* Form w:= C * v
*
CALL CHEMV( UPLO, N, ONE, C, LDC, V, INCV, ZERO, WORK, 1 )
*
ALPHA = -HALF*TAU*CDOTC( N, WORK, 1, V, INCV )
CALL CAXPY( N, ALPHA, V, INCV, WORK, 1 )
*
* C := C - v * w' - w * v'
*
CALL CHER2( UPLO, N, -TAU, V, INCV, WORK, 1, C, LDC )
*
RETURN
*
* End of CLARFY
*
END
|