1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244
|
*> \brief \b DCHKGG
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DCHKGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
* TSTDIF, THRSHN, NOUNIT, A, LDA, B, H, T, S1,
* S2, P1, P2, U, LDU, V, Q, Z, ALPHR1, ALPHI1,
* BETA1, ALPHR3, ALPHI3, BETA3, EVECTL, EVECTR,
* WORK, LWORK, LLWORK, RESULT, INFO )
*
* .. Scalar Arguments ..
* LOGICAL TSTDIF
* INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES
* DOUBLE PRECISION THRESH, THRSHN
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * ), LLWORK( * )
* INTEGER ISEED( 4 ), NN( * )
* DOUBLE PRECISION A( LDA, * ), ALPHI1( * ), ALPHI3( * ),
* $ ALPHR1( * ), ALPHR3( * ), B( LDA, * ),
* $ BETA1( * ), BETA3( * ), EVECTL( LDU, * ),
* $ EVECTR( LDU, * ), H( LDA, * ), P1( LDA, * ),
* $ P2( LDA, * ), Q( LDU, * ), RESULT( 15 ),
* $ S1( LDA, * ), S2( LDA, * ), T( LDA, * ),
* $ U( LDU, * ), V( LDU, * ), WORK( * ),
* $ Z( LDU, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DCHKGG checks the nonsymmetric generalized eigenvalue problem
*> routines.
*> T T T
*> DGGHRD factors A and B as U H V and U T V , where means
*> transpose, H is hessenberg, T is triangular and U and V are
*> orthogonal.
*> T T
*> DHGEQZ factors H and T as Q S Z and Q P Z , where P is upper
*> triangular, S is in generalized Schur form (block upper triangular,
*> with 1x1 and 2x2 blocks on the diagonal, the 2x2 blocks
*> corresponding to complex conjugate pairs of generalized
*> eigenvalues), and Q and Z are orthogonal. It also computes the
*> generalized eigenvalues (alpha(1),beta(1)),...,(alpha(n),beta(n)),
*> where alpha(j)=S(j,j) and beta(j)=P(j,j) -- thus,
*> w(j) = alpha(j)/beta(j) is a root of the generalized eigenvalue
*> problem
*>
*> det( A - w(j) B ) = 0
*>
*> and m(j) = beta(j)/alpha(j) is a root of the essentially equivalent
*> problem
*>
*> det( m(j) A - B ) = 0
*>
*> DTGEVC computes the matrix L of left eigenvectors and the matrix R
*> of right eigenvectors for the matrix pair ( S, P ). In the
*> description below, l and r are left and right eigenvectors
*> corresponding to the generalized eigenvalues (alpha,beta).
*>
*> When DCHKGG is called, a number of matrix "sizes" ("n's") and a
*> number of matrix "types" are specified. For each size ("n")
*> and each type of matrix, one matrix will be generated and used
*> to test the nonsymmetric eigenroutines. For each matrix, 15
*> tests will be performed. The first twelve "test ratios" should be
*> small -- O(1). They will be compared with the threshhold THRESH:
*>
*> T
*> (1) | A - U H V | / ( |A| n ulp )
*>
*> T
*> (2) | B - U T V | / ( |B| n ulp )
*>
*> T
*> (3) | I - UU | / ( n ulp )
*>
*> T
*> (4) | I - VV | / ( n ulp )
*>
*> T
*> (5) | H - Q S Z | / ( |H| n ulp )
*>
*> T
*> (6) | T - Q P Z | / ( |T| n ulp )
*>
*> T
*> (7) | I - QQ | / ( n ulp )
*>
*> T
*> (8) | I - ZZ | / ( n ulp )
*>
*> (9) max over all left eigenvalue/-vector pairs (beta/alpha,l) of
*>
*> | l**H * (beta S - alpha P) | / ( ulp max( |beta S|, |alpha P| ) )
*>
*> (10) max over all left eigenvalue/-vector pairs (beta/alpha,l') of
*> T
*> | l'**H * (beta H - alpha T) | / ( ulp max( |beta H|, |alpha T| ) )
*>
*> where the eigenvectors l' are the result of passing Q to
*> DTGEVC and back transforming (HOWMNY='B').
*>
*> (11) max over all right eigenvalue/-vector pairs (beta/alpha,r) of
*>
*> | (beta S - alpha T) r | / ( ulp max( |beta S|, |alpha T| ) )
*>
*> (12) max over all right eigenvalue/-vector pairs (beta/alpha,r') of
*>
*> | (beta H - alpha T) r' | / ( ulp max( |beta H|, |alpha T| ) )
*>
*> where the eigenvectors r' are the result of passing Z to
*> DTGEVC and back transforming (HOWMNY='B').
*>
*> The last three test ratios will usually be small, but there is no
*> mathematical requirement that they be so. They are therefore
*> compared with THRESH only if TSTDIF is .TRUE.
*>
*> (13) | S(Q,Z computed) - S(Q,Z not computed) | / ( |S| ulp )
*>
*> (14) | P(Q,Z computed) - P(Q,Z not computed) | / ( |P| ulp )
*>
*> (15) max( |alpha(Q,Z computed) - alpha(Q,Z not computed)|/|S| ,
*> |beta(Q,Z computed) - beta(Q,Z not computed)|/|P| ) / ulp
*>
*> In addition, the normalization of L and R are checked, and compared
*> with the threshhold THRSHN.
*>
*> Test Matrices
*> ---- --------
*>
*> The sizes of the test matrices are specified by an array
*> NN(1:NSIZES); the value of each element NN(j) specifies one size.
*> The "types" are specified by a logical array DOTYPE( 1:NTYPES ); if
*> DOTYPE(j) is .TRUE., then matrix type "j" will be generated.
*> Currently, the list of possible types is:
*>
*> (1) ( 0, 0 ) (a pair of zero matrices)
*>
*> (2) ( I, 0 ) (an identity and a zero matrix)
*>
*> (3) ( 0, I ) (an identity and a zero matrix)
*>
*> (4) ( I, I ) (a pair of identity matrices)
*>
*> t t
*> (5) ( J , J ) (a pair of transposed Jordan blocks)
*>
*> t ( I 0 )
*> (6) ( X, Y ) where X = ( J 0 ) and Y = ( t )
*> ( 0 I ) ( 0 J )
*> and I is a k x k identity and J a (k+1)x(k+1)
*> Jordan block; k=(N-1)/2
*>
*> (7) ( D, I ) where D is diag( 0, 1,..., N-1 ) (a diagonal
*> matrix with those diagonal entries.)
*> (8) ( I, D )
*>
*> (9) ( big*D, small*I ) where "big" is near overflow and small=1/big
*>
*> (10) ( small*D, big*I )
*>
*> (11) ( big*I, small*D )
*>
*> (12) ( small*I, big*D )
*>
*> (13) ( big*D, big*I )
*>
*> (14) ( small*D, small*I )
*>
*> (15) ( D1, D2 ) where D1 is diag( 0, 0, 1, ..., N-3, 0 ) and
*> D2 is diag( 0, N-3, N-4,..., 1, 0, 0 )
*> t t
*> (16) U ( J , J ) V where U and V are random orthogonal matrices.
*>
*> (17) U ( T1, T2 ) V where T1 and T2 are upper triangular matrices
*> with random O(1) entries above the diagonal
*> and diagonal entries diag(T1) =
*> ( 0, 0, 1, ..., N-3, 0 ) and diag(T2) =
*> ( 0, N-3, N-4,..., 1, 0, 0 )
*>
*> (18) U ( T1, T2 ) V diag(T1) = ( 0, 0, 1, 1, s, ..., s, 0 )
*> diag(T2) = ( 0, 1, 0, 1,..., 1, 0 )
*> s = machine precision.
*>
*> (19) U ( T1, T2 ) V diag(T1)=( 0,0,1,1, 1-d, ..., 1-(N-5)*d=s, 0 )
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0 )
*>
*> N-5
*> (20) U ( T1, T2 ) V diag(T1)=( 0, 0, 1, 1, a, ..., a =s, 0 )
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
*>
*> (21) U ( T1, T2 ) V diag(T1)=( 0, 0, 1, r1, r2, ..., r(N-4), 0 )
*> diag(T2) = ( 0, 1, 0, 1, ..., 1, 0, 0 )
*> where r1,..., r(N-4) are random.
*>
*> (22) U ( big*T1, small*T2 ) V diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (23) U ( small*T1, big*T2 ) V diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (24) U ( small*T1, small*T2 ) V diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (25) U ( big*T1, big*T2 ) V diag(T1) = ( 0, 0, 1, ..., N-3, 0 )
*> diag(T2) = ( 0, 1, ..., 1, 0, 0 )
*>
*> (26) U ( T1, T2 ) V where T1 and T2 are random upper-triangular
*> matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NSIZES
*> \verbatim
*> NSIZES is INTEGER
*> The number of sizes of matrices to use. If it is zero,
*> DCHKGG does nothing. It must be at least zero.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER array, dimension (NSIZES)
*> An array containing the sizes to be used for the matrices.
*> Zero values will be skipped. The values must be at least
*> zero.
*> \endverbatim
*>
*> \param[in] NTYPES
*> \verbatim
*> NTYPES is INTEGER
*> The number of elements in DOTYPE. If it is zero, DCHKGG
*> does nothing. It must be at least zero. If it is MAXTYP+1
*> and NSIZES is 1, then an additional type, MAXTYP+1 is
*> defined, which is to use whatever matrix is in A. This
*> is only useful if DOTYPE(1:MAXTYP) is .FALSE. and
*> DOTYPE(MAXTYP+1) is .TRUE. .
*> \endverbatim
*>
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> If DOTYPE(j) is .TRUE., then for each size in NN a
*> matrix of that size and of type j will be generated.
*> If NTYPES is smaller than the maximum number of types
*> defined (PARAMETER MAXTYP), then types NTYPES+1 through
*> MAXTYP will not be generated. If NTYPES is larger
*> than MAXTYP, DOTYPE(MAXTYP+1) through DOTYPE(NTYPES)
*> will be ignored.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry ISEED specifies the seed of the random number
*> generator. The array elements should be between 0 and 4095;
*> if not they will be reduced mod 4096. Also, ISEED(4) must
*> be odd. The random number generator uses a linear
*> congruential sequence limited to small integers, and so
*> should produce machine independent random numbers. The
*> values of ISEED are changed on exit, and can be used in the
*> next call to DCHKGG to continue the same random number
*> sequence.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> A test will count as "failed" if the "error", computed as
*> described above, exceeds THRESH. Note that the error is
*> scaled to be O(1), so THRESH should be a reasonably small
*> multiple of 1, e.g., 10 or 100. In particular, it should
*> not depend on the precision (single vs. double) or the size
*> of the matrix. It must be at least zero.
*> \endverbatim
*>
*> \param[in] TSTDIF
*> \verbatim
*> TSTDIF is LOGICAL
*> Specifies whether test ratios 13-15 will be computed and
*> compared with THRESH.
*> = .FALSE.: Only test ratios 1-12 will be computed and tested.
*> Ratios 13-15 will be set to zero.
*> = .TRUE.: All the test ratios 1-15 will be computed and
*> tested.
*> \endverbatim
*>
*> \param[in] THRSHN
*> \verbatim
*> THRSHN is DOUBLE PRECISION
*> Threshhold for reporting eigenvector normalization error.
*> If the normalization of any eigenvector differs from 1 by
*> more than THRSHN*ulp, then a special error message will be
*> printed. (This is handled separately from the other tests,
*> since only a compiler or programming error should cause an
*> error message, at least if THRSHN is at least 5--10.)
*> \endverbatim
*>
*> \param[in] NOUNIT
*> \verbatim
*> NOUNIT is INTEGER
*> The FORTRAN unit number for printing out error messages
*> (e.g., if a routine returns IINFO not equal to 0.)
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension
*> (LDA, max(NN))
*> Used to hold the original A matrix. Used as input only
*> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
*> DOTYPE(MAXTYP+1)=.TRUE.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A, B, H, T, S1, P1, S2, and P2.
*> It must be at least 1 and at least max( NN ).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension
*> (LDA, max(NN))
*> Used to hold the original B matrix. Used as input only
*> if NTYPES=MAXTYP+1, DOTYPE(1:MAXTYP)=.FALSE., and
*> DOTYPE(MAXTYP+1)=.TRUE.
*> \endverbatim
*>
*> \param[out] H
*> \verbatim
*> H is DOUBLE PRECISION array, dimension (LDA, max(NN))
*> The upper Hessenberg matrix computed from A by DGGHRD.
*> \endverbatim
*>
*> \param[out] T
*> \verbatim
*> T is DOUBLE PRECISION array, dimension (LDA, max(NN))
*> The upper triangular matrix computed from B by DGGHRD.
*> \endverbatim
*>
*> \param[out] S1
*> \verbatim
*> S1 is DOUBLE PRECISION array, dimension (LDA, max(NN))
*> The Schur (block upper triangular) matrix computed from H by
*> DHGEQZ when Q and Z are also computed.
*> \endverbatim
*>
*> \param[out] S2
*> \verbatim
*> S2 is DOUBLE PRECISION array, dimension (LDA, max(NN))
*> The Schur (block upper triangular) matrix computed from H by
*> DHGEQZ when Q and Z are not computed.
*> \endverbatim
*>
*> \param[out] P1
*> \verbatim
*> P1 is DOUBLE PRECISION array, dimension (LDA, max(NN))
*> The upper triangular matrix computed from T by DHGEQZ
*> when Q and Z are also computed.
*> \endverbatim
*>
*> \param[out] P2
*> \verbatim
*> P2 is DOUBLE PRECISION array, dimension (LDA, max(NN))
*> The upper triangular matrix computed from T by DHGEQZ
*> when Q and Z are not computed.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*> U is DOUBLE PRECISION array, dimension (LDU, max(NN))
*> The (left) orthogonal matrix computed by DGGHRD.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of U, V, Q, Z, EVECTL, and EVEZTR. It
*> must be at least 1 and at least max( NN ).
*> \endverbatim
*>
*> \param[out] V
*> \verbatim
*> V is DOUBLE PRECISION array, dimension (LDU, max(NN))
*> The (right) orthogonal matrix computed by DGGHRD.
*> \endverbatim
*>
*> \param[out] Q
*> \verbatim
*> Q is DOUBLE PRECISION array, dimension (LDU, max(NN))
*> The (left) orthogonal matrix computed by DHGEQZ.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is DOUBLE PRECISION array, dimension (LDU, max(NN))
*> The (left) orthogonal matrix computed by DHGEQZ.
*> \endverbatim
*>
*> \param[out] ALPHR1
*> \verbatim
*> ALPHR1 is DOUBLE PRECISION array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] ALPHI1
*> \verbatim
*> ALPHI1 is DOUBLE PRECISION array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] BETA1
*> \verbatim
*> BETA1 is DOUBLE PRECISION array, dimension (max(NN))
*>
*> The generalized eigenvalues of (A,B) computed by DHGEQZ
*> when Q, Z, and the full Schur matrices are computed.
*> On exit, ( ALPHR1(k)+ALPHI1(k)*i ) / BETA1(k) is the k-th
*> generalized eigenvalue of the matrices in A and B.
*> \endverbatim
*>
*> \param[out] ALPHR3
*> \verbatim
*> ALPHR3 is DOUBLE PRECISION array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] ALPHI3
*> \verbatim
*> ALPHI3 is DOUBLE PRECISION array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] BETA3
*> \verbatim
*> BETA3 is DOUBLE PRECISION array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] EVECTL
*> \verbatim
*> EVECTL is DOUBLE PRECISION array, dimension (LDU, max(NN))
*> The (block lower triangular) left eigenvector matrix for
*> the matrices in S1 and P1. (See DTGEVC for the format.)
*> \endverbatim
*>
*> \param[out] EVECTR
*> \verbatim
*> EVECTR is DOUBLE PRECISION array, dimension (LDU, max(NN))
*> The (block upper triangular) right eigenvector matrix for
*> the matrices in S1 and P1. (See DTGEVC for the format.)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The number of entries in WORK. This must be at least
*> max( 2 * N**2, 6*N, 1 ), for all N=NN(j).
*> \endverbatim
*>
*> \param[out] LLWORK
*> \verbatim
*> LLWORK is LOGICAL array, dimension (max(NN))
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (15)
*> The values computed by the tests described above.
*> The values are currently limited to 1/ulp, to avoid
*> overflow.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> > 0: A routine returned an error code. INFO is the
*> absolute value of the INFO value returned.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DCHKGG( NSIZES, NN, NTYPES, DOTYPE, ISEED, THRESH,
$ TSTDIF, THRSHN, NOUNIT, A, LDA, B, H, T, S1,
$ S2, P1, P2, U, LDU, V, Q, Z, ALPHR1, ALPHI1,
$ BETA1, ALPHR3, ALPHI3, BETA3, EVECTL, EVECTR,
$ WORK, LWORK, LLWORK, RESULT, INFO )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
LOGICAL TSTDIF
INTEGER INFO, LDA, LDU, LWORK, NOUNIT, NSIZES, NTYPES
DOUBLE PRECISION THRESH, THRSHN
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * ), LLWORK( * )
INTEGER ISEED( 4 ), NN( * )
DOUBLE PRECISION A( LDA, * ), ALPHI1( * ), ALPHI3( * ),
$ ALPHR1( * ), ALPHR3( * ), B( LDA, * ),
$ BETA1( * ), BETA3( * ), EVECTL( LDU, * ),
$ EVECTR( LDU, * ), H( LDA, * ), P1( LDA, * ),
$ P2( LDA, * ), Q( LDU, * ), RESULT( 15 ),
$ S1( LDA, * ), S2( LDA, * ), T( LDA, * ),
$ U( LDU, * ), V( LDU, * ), WORK( * ),
$ Z( LDU, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
INTEGER MAXTYP
PARAMETER ( MAXTYP = 26 )
* ..
* .. Local Scalars ..
LOGICAL BADNN
INTEGER I1, IADD, IINFO, IN, J, JC, JR, JSIZE, JTYPE,
$ LWKOPT, MTYPES, N, N1, NERRS, NMATS, NMAX,
$ NTEST, NTESTT
DOUBLE PRECISION ANORM, BNORM, SAFMAX, SAFMIN, TEMP1, TEMP2,
$ ULP, ULPINV
* ..
* .. Local Arrays ..
INTEGER IASIGN( MAXTYP ), IBSIGN( MAXTYP ),
$ IOLDSD( 4 ), KADD( 6 ), KAMAGN( MAXTYP ),
$ KATYPE( MAXTYP ), KAZERO( MAXTYP ),
$ KBMAGN( MAXTYP ), KBTYPE( MAXTYP ),
$ KBZERO( MAXTYP ), KCLASS( MAXTYP ),
$ KTRIAN( MAXTYP ), KZ1( 6 ), KZ2( 6 )
DOUBLE PRECISION DUMMA( 4 ), RMAGN( 0: 3 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE, DLARND
EXTERNAL DLAMCH, DLANGE, DLARND
* ..
* .. External Subroutines ..
EXTERNAL DGEQR2, DGET51, DGET52, DGGHRD, DHGEQZ, DLABAD,
$ DLACPY, DLARFG, DLASET, DLASUM, DLATM4, DORM2R,
$ DTGEVC, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, SIGN
* ..
* .. Data statements ..
DATA KCLASS / 15*1, 10*2, 1*3 /
DATA KZ1 / 0, 1, 2, 1, 3, 3 /
DATA KZ2 / 0, 0, 1, 2, 1, 1 /
DATA KADD / 0, 0, 0, 0, 3, 2 /
DATA KATYPE / 0, 1, 0, 1, 2, 3, 4, 1, 4, 4, 1, 1, 4,
$ 4, 4, 2, 4, 5, 8, 7, 9, 4*4, 0 /
DATA KBTYPE / 0, 0, 1, 1, 2, -3, 1, 4, 1, 1, 4, 4,
$ 1, 1, -4, 2, -4, 8*8, 0 /
DATA KAZERO / 6*1, 2, 1, 2*2, 2*1, 2*2, 3, 1, 3,
$ 4*5, 4*3, 1 /
DATA KBZERO / 6*1, 1, 2, 2*1, 2*2, 2*1, 4, 1, 4,
$ 4*6, 4*4, 1 /
DATA KAMAGN / 8*1, 2, 3, 2, 3, 2, 3, 7*1, 2, 3, 3,
$ 2, 1 /
DATA KBMAGN / 8*1, 3, 2, 3, 2, 2, 3, 7*1, 3, 2, 3,
$ 2, 1 /
DATA KTRIAN / 16*0, 10*1 /
DATA IASIGN / 6*0, 2, 0, 2*2, 2*0, 3*2, 0, 2, 3*0,
$ 5*2, 0 /
DATA IBSIGN / 7*0, 2, 2*0, 2*2, 2*0, 2, 0, 2, 9*0 /
* ..
* .. Executable Statements ..
*
* Check for errors
*
INFO = 0
*
BADNN = .FALSE.
NMAX = 1
DO 10 J = 1, NSIZES
NMAX = MAX( NMAX, NN( J ) )
IF( NN( J ).LT.0 )
$ BADNN = .TRUE.
10 CONTINUE
*
* Maximum blocksize and shift -- we assume that blocksize and number
* of shifts are monotone increasing functions of N.
*
LWKOPT = MAX( 6*NMAX, 2*NMAX*NMAX, 1 )
*
* Check for errors
*
IF( NSIZES.LT.0 ) THEN
INFO = -1
ELSE IF( BADNN ) THEN
INFO = -2
ELSE IF( NTYPES.LT.0 ) THEN
INFO = -3
ELSE IF( THRESH.LT.ZERO ) THEN
INFO = -6
ELSE IF( LDA.LE.1 .OR. LDA.LT.NMAX ) THEN
INFO = -10
ELSE IF( LDU.LE.1 .OR. LDU.LT.NMAX ) THEN
INFO = -19
ELSE IF( LWKOPT.GT.LWORK ) THEN
INFO = -30
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DCHKGG', -INFO )
RETURN
END IF
*
* Quick return if possible
*
IF( NSIZES.EQ.0 .OR. NTYPES.EQ.0 )
$ RETURN
*
SAFMIN = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
SAFMIN = SAFMIN / ULP
SAFMAX = ONE / SAFMIN
CALL DLABAD( SAFMIN, SAFMAX )
ULPINV = ONE / ULP
*
* The values RMAGN(2:3) depend on N, see below.
*
RMAGN( 0 ) = ZERO
RMAGN( 1 ) = ONE
*
* Loop over sizes, types
*
NTESTT = 0
NERRS = 0
NMATS = 0
*
DO 240 JSIZE = 1, NSIZES
N = NN( JSIZE )
N1 = MAX( 1, N )
RMAGN( 2 ) = SAFMAX*ULP / DBLE( N1 )
RMAGN( 3 ) = SAFMIN*ULPINV*N1
*
IF( NSIZES.NE.1 ) THEN
MTYPES = MIN( MAXTYP, NTYPES )
ELSE
MTYPES = MIN( MAXTYP+1, NTYPES )
END IF
*
DO 230 JTYPE = 1, MTYPES
IF( .NOT.DOTYPE( JTYPE ) )
$ GO TO 230
NMATS = NMATS + 1
NTEST = 0
*
* Save ISEED in case of an error.
*
DO 20 J = 1, 4
IOLDSD( J ) = ISEED( J )
20 CONTINUE
*
* Initialize RESULT
*
DO 30 J = 1, 15
RESULT( J ) = ZERO
30 CONTINUE
*
* Compute A and B
*
* Description of control parameters:
*
* KZLASS: =1 means w/o rotation, =2 means w/ rotation,
* =3 means random.
* KATYPE: the "type" to be passed to DLATM4 for computing A.
* KAZERO: the pattern of zeros on the diagonal for A:
* =1: ( xxx ), =2: (0, xxx ) =3: ( 0, 0, xxx, 0 ),
* =4: ( 0, xxx, 0, 0 ), =5: ( 0, 0, 1, xxx, 0 ),
* =6: ( 0, 1, 0, xxx, 0 ). (xxx means a string of
* non-zero entries.)
* KAMAGN: the magnitude of the matrix: =0: zero, =1: O(1),
* =2: large, =3: small.
* IASIGN: 1 if the diagonal elements of A are to be
* multiplied by a random magnitude 1 number, =2 if
* randomly chosen diagonal blocks are to be rotated
* to form 2x2 blocks.
* KBTYPE, KBZERO, KBMAGN, IBSIGN: the same, but for B.
* KTRIAN: =0: don't fill in the upper triangle, =1: do.
* KZ1, KZ2, KADD: used to implement KAZERO and KBZERO.
* RMAGN: used to implement KAMAGN and KBMAGN.
*
IF( MTYPES.GT.MAXTYP )
$ GO TO 110
IINFO = 0
IF( KCLASS( JTYPE ).LT.3 ) THEN
*
* Generate A (w/o rotation)
*
IF( ABS( KATYPE( JTYPE ) ).EQ.3 ) THEN
IN = 2*( ( N-1 ) / 2 ) + 1
IF( IN.NE.N )
$ CALL DLASET( 'Full', N, N, ZERO, ZERO, A, LDA )
ELSE
IN = N
END IF
CALL DLATM4( KATYPE( JTYPE ), IN, KZ1( KAZERO( JTYPE ) ),
$ KZ2( KAZERO( JTYPE ) ), IASIGN( JTYPE ),
$ RMAGN( KAMAGN( JTYPE ) ), ULP,
$ RMAGN( KTRIAN( JTYPE )*KAMAGN( JTYPE ) ), 2,
$ ISEED, A, LDA )
IADD = KADD( KAZERO( JTYPE ) )
IF( IADD.GT.0 .AND. IADD.LE.N )
$ A( IADD, IADD ) = RMAGN( KAMAGN( JTYPE ) )
*
* Generate B (w/o rotation)
*
IF( ABS( KBTYPE( JTYPE ) ).EQ.3 ) THEN
IN = 2*( ( N-1 ) / 2 ) + 1
IF( IN.NE.N )
$ CALL DLASET( 'Full', N, N, ZERO, ZERO, B, LDA )
ELSE
IN = N
END IF
CALL DLATM4( KBTYPE( JTYPE ), IN, KZ1( KBZERO( JTYPE ) ),
$ KZ2( KBZERO( JTYPE ) ), IBSIGN( JTYPE ),
$ RMAGN( KBMAGN( JTYPE ) ), ONE,
$ RMAGN( KTRIAN( JTYPE )*KBMAGN( JTYPE ) ), 2,
$ ISEED, B, LDA )
IADD = KADD( KBZERO( JTYPE ) )
IF( IADD.NE.0 .AND. IADD.LE.N )
$ B( IADD, IADD ) = RMAGN( KBMAGN( JTYPE ) )
*
IF( KCLASS( JTYPE ).EQ.2 .AND. N.GT.0 ) THEN
*
* Include rotations
*
* Generate U, V as Householder transformations times
* a diagonal matrix.
*
DO 50 JC = 1, N - 1
DO 40 JR = JC, N
U( JR, JC ) = DLARND( 3, ISEED )
V( JR, JC ) = DLARND( 3, ISEED )
40 CONTINUE
CALL DLARFG( N+1-JC, U( JC, JC ), U( JC+1, JC ), 1,
$ WORK( JC ) )
WORK( 2*N+JC ) = SIGN( ONE, U( JC, JC ) )
U( JC, JC ) = ONE
CALL DLARFG( N+1-JC, V( JC, JC ), V( JC+1, JC ), 1,
$ WORK( N+JC ) )
WORK( 3*N+JC ) = SIGN( ONE, V( JC, JC ) )
V( JC, JC ) = ONE
50 CONTINUE
U( N, N ) = ONE
WORK( N ) = ZERO
WORK( 3*N ) = SIGN( ONE, DLARND( 2, ISEED ) )
V( N, N ) = ONE
WORK( 2*N ) = ZERO
WORK( 4*N ) = SIGN( ONE, DLARND( 2, ISEED ) )
*
* Apply the diagonal matrices
*
DO 70 JC = 1, N
DO 60 JR = 1, N
A( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
$ A( JR, JC )
B( JR, JC ) = WORK( 2*N+JR )*WORK( 3*N+JC )*
$ B( JR, JC )
60 CONTINUE
70 CONTINUE
CALL DORM2R( 'L', 'N', N, N, N-1, U, LDU, WORK, A,
$ LDA, WORK( 2*N+1 ), IINFO )
IF( IINFO.NE.0 )
$ GO TO 100
CALL DORM2R( 'R', 'T', N, N, N-1, V, LDU, WORK( N+1 ),
$ A, LDA, WORK( 2*N+1 ), IINFO )
IF( IINFO.NE.0 )
$ GO TO 100
CALL DORM2R( 'L', 'N', N, N, N-1, U, LDU, WORK, B,
$ LDA, WORK( 2*N+1 ), IINFO )
IF( IINFO.NE.0 )
$ GO TO 100
CALL DORM2R( 'R', 'T', N, N, N-1, V, LDU, WORK( N+1 ),
$ B, LDA, WORK( 2*N+1 ), IINFO )
IF( IINFO.NE.0 )
$ GO TO 100
END IF
ELSE
*
* Random matrices
*
DO 90 JC = 1, N
DO 80 JR = 1, N
A( JR, JC ) = RMAGN( KAMAGN( JTYPE ) )*
$ DLARND( 2, ISEED )
B( JR, JC ) = RMAGN( KBMAGN( JTYPE ) )*
$ DLARND( 2, ISEED )
80 CONTINUE
90 CONTINUE
END IF
*
ANORM = DLANGE( '1', N, N, A, LDA, WORK )
BNORM = DLANGE( '1', N, N, B, LDA, WORK )
*
100 CONTINUE
*
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'Generator', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
RETURN
END IF
*
110 CONTINUE
*
* Call DGEQR2, DORM2R, and DGGHRD to compute H, T, U, and V
*
CALL DLACPY( ' ', N, N, A, LDA, H, LDA )
CALL DLACPY( ' ', N, N, B, LDA, T, LDA )
NTEST = 1
RESULT( 1 ) = ULPINV
*
CALL DGEQR2( N, N, T, LDA, WORK, WORK( N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DGEQR2', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL DORM2R( 'L', 'T', N, N, N, T, LDA, WORK, H, LDA,
$ WORK( N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DORM2R', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL DLASET( 'Full', N, N, ZERO, ONE, U, LDU )
CALL DORM2R( 'R', 'N', N, N, N, T, LDA, WORK, U, LDU,
$ WORK( N+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DORM2R', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL DGGHRD( 'V', 'I', N, 1, N, H, LDA, T, LDA, U, LDU, V,
$ LDU, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DGGHRD', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
NTEST = 4
*
* Do tests 1--4
*
CALL DGET51( 1, N, A, LDA, H, LDA, U, LDU, V, LDU, WORK,
$ RESULT( 1 ) )
CALL DGET51( 1, N, B, LDA, T, LDA, U, LDU, V, LDU, WORK,
$ RESULT( 2 ) )
CALL DGET51( 3, N, B, LDA, T, LDA, U, LDU, U, LDU, WORK,
$ RESULT( 3 ) )
CALL DGET51( 3, N, B, LDA, T, LDA, V, LDU, V, LDU, WORK,
$ RESULT( 4 ) )
*
* Call DHGEQZ to compute S1, P1, S2, P2, Q, and Z, do tests.
*
* Compute T1 and UZ
*
* Eigenvalues only
*
CALL DLACPY( ' ', N, N, H, LDA, S2, LDA )
CALL DLACPY( ' ', N, N, T, LDA, P2, LDA )
NTEST = 5
RESULT( 5 ) = ULPINV
*
CALL DHGEQZ( 'E', 'N', 'N', N, 1, N, S2, LDA, P2, LDA,
$ ALPHR3, ALPHI3, BETA3, Q, LDU, Z, LDU, WORK,
$ LWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DHGEQZ(E)', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
* Eigenvalues and Full Schur Form
*
CALL DLACPY( ' ', N, N, H, LDA, S2, LDA )
CALL DLACPY( ' ', N, N, T, LDA, P2, LDA )
*
CALL DHGEQZ( 'S', 'N', 'N', N, 1, N, S2, LDA, P2, LDA,
$ ALPHR1, ALPHI1, BETA1, Q, LDU, Z, LDU, WORK,
$ LWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DHGEQZ(S)', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
* Eigenvalues, Schur Form, and Schur Vectors
*
CALL DLACPY( ' ', N, N, H, LDA, S1, LDA )
CALL DLACPY( ' ', N, N, T, LDA, P1, LDA )
*
CALL DHGEQZ( 'S', 'I', 'I', N, 1, N, S1, LDA, P1, LDA,
$ ALPHR1, ALPHI1, BETA1, Q, LDU, Z, LDU, WORK,
$ LWORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DHGEQZ(V)', IINFO, N, JTYPE,
$ IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
NTEST = 8
*
* Do Tests 5--8
*
CALL DGET51( 1, N, H, LDA, S1, LDA, Q, LDU, Z, LDU, WORK,
$ RESULT( 5 ) )
CALL DGET51( 1, N, T, LDA, P1, LDA, Q, LDU, Z, LDU, WORK,
$ RESULT( 6 ) )
CALL DGET51( 3, N, T, LDA, P1, LDA, Q, LDU, Q, LDU, WORK,
$ RESULT( 7 ) )
CALL DGET51( 3, N, T, LDA, P1, LDA, Z, LDU, Z, LDU, WORK,
$ RESULT( 8 ) )
*
* Compute the Left and Right Eigenvectors of (S1,P1)
*
* 9: Compute the left eigenvector Matrix without
* back transforming:
*
NTEST = 9
RESULT( 9 ) = ULPINV
*
* To test "SELECT" option, compute half of the eigenvectors
* in one call, and half in another
*
I1 = N / 2
DO 120 J = 1, I1
LLWORK( J ) = .TRUE.
120 CONTINUE
DO 130 J = I1 + 1, N
LLWORK( J ) = .FALSE.
130 CONTINUE
*
CALL DTGEVC( 'L', 'S', LLWORK, N, S1, LDA, P1, LDA, EVECTL,
$ LDU, DUMMA, LDU, N, IN, WORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DTGEVC(L,S1)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
I1 = IN
DO 140 J = 1, I1
LLWORK( J ) = .FALSE.
140 CONTINUE
DO 150 J = I1 + 1, N
LLWORK( J ) = .TRUE.
150 CONTINUE
*
CALL DTGEVC( 'L', 'S', LLWORK, N, S1, LDA, P1, LDA,
$ EVECTL( 1, I1+1 ), LDU, DUMMA, LDU, N, IN,
$ WORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DTGEVC(L,S2)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL DGET52( .TRUE., N, S1, LDA, P1, LDA, EVECTL, LDU,
$ ALPHR1, ALPHI1, BETA1, WORK, DUMMA( 1 ) )
RESULT( 9 ) = DUMMA( 1 )
IF( DUMMA( 2 ).GT.THRSHN ) THEN
WRITE( NOUNIT, FMT = 9998 )'Left', 'DTGEVC(HOWMNY=S)',
$ DUMMA( 2 ), N, JTYPE, IOLDSD
END IF
*
* 10: Compute the left eigenvector Matrix with
* back transforming:
*
NTEST = 10
RESULT( 10 ) = ULPINV
CALL DLACPY( 'F', N, N, Q, LDU, EVECTL, LDU )
CALL DTGEVC( 'L', 'B', LLWORK, N, S1, LDA, P1, LDA, EVECTL,
$ LDU, DUMMA, LDU, N, IN, WORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DTGEVC(L,B)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL DGET52( .TRUE., N, H, LDA, T, LDA, EVECTL, LDU, ALPHR1,
$ ALPHI1, BETA1, WORK, DUMMA( 1 ) )
RESULT( 10 ) = DUMMA( 1 )
IF( DUMMA( 2 ).GT.THRSHN ) THEN
WRITE( NOUNIT, FMT = 9998 )'Left', 'DTGEVC(HOWMNY=B)',
$ DUMMA( 2 ), N, JTYPE, IOLDSD
END IF
*
* 11: Compute the right eigenvector Matrix without
* back transforming:
*
NTEST = 11
RESULT( 11 ) = ULPINV
*
* To test "SELECT" option, compute half of the eigenvectors
* in one call, and half in another
*
I1 = N / 2
DO 160 J = 1, I1
LLWORK( J ) = .TRUE.
160 CONTINUE
DO 170 J = I1 + 1, N
LLWORK( J ) = .FALSE.
170 CONTINUE
*
CALL DTGEVC( 'R', 'S', LLWORK, N, S1, LDA, P1, LDA, DUMMA,
$ LDU, EVECTR, LDU, N, IN, WORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DTGEVC(R,S1)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
I1 = IN
DO 180 J = 1, I1
LLWORK( J ) = .FALSE.
180 CONTINUE
DO 190 J = I1 + 1, N
LLWORK( J ) = .TRUE.
190 CONTINUE
*
CALL DTGEVC( 'R', 'S', LLWORK, N, S1, LDA, P1, LDA, DUMMA,
$ LDU, EVECTR( 1, I1+1 ), LDU, N, IN, WORK,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DTGEVC(R,S2)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL DGET52( .FALSE., N, S1, LDA, P1, LDA, EVECTR, LDU,
$ ALPHR1, ALPHI1, BETA1, WORK, DUMMA( 1 ) )
RESULT( 11 ) = DUMMA( 1 )
IF( DUMMA( 2 ).GT.THRESH ) THEN
WRITE( NOUNIT, FMT = 9998 )'Right', 'DTGEVC(HOWMNY=S)',
$ DUMMA( 2 ), N, JTYPE, IOLDSD
END IF
*
* 12: Compute the right eigenvector Matrix with
* back transforming:
*
NTEST = 12
RESULT( 12 ) = ULPINV
CALL DLACPY( 'F', N, N, Z, LDU, EVECTR, LDU )
CALL DTGEVC( 'R', 'B', LLWORK, N, S1, LDA, P1, LDA, DUMMA,
$ LDU, EVECTR, LDU, N, IN, WORK, IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUNIT, FMT = 9999 )'DTGEVC(R,B)', IINFO, N,
$ JTYPE, IOLDSD
INFO = ABS( IINFO )
GO TO 210
END IF
*
CALL DGET52( .FALSE., N, H, LDA, T, LDA, EVECTR, LDU,
$ ALPHR1, ALPHI1, BETA1, WORK, DUMMA( 1 ) )
RESULT( 12 ) = DUMMA( 1 )
IF( DUMMA( 2 ).GT.THRESH ) THEN
WRITE( NOUNIT, FMT = 9998 )'Right', 'DTGEVC(HOWMNY=B)',
$ DUMMA( 2 ), N, JTYPE, IOLDSD
END IF
*
* Tests 13--15 are done only on request
*
IF( TSTDIF ) THEN
*
* Do Tests 13--14
*
CALL DGET51( 2, N, S1, LDA, S2, LDA, Q, LDU, Z, LDU,
$ WORK, RESULT( 13 ) )
CALL DGET51( 2, N, P1, LDA, P2, LDA, Q, LDU, Z, LDU,
$ WORK, RESULT( 14 ) )
*
* Do Test 15
*
TEMP1 = ZERO
TEMP2 = ZERO
DO 200 J = 1, N
TEMP1 = MAX( TEMP1, ABS( ALPHR1( J )-ALPHR3( J ) )+
$ ABS( ALPHI1( J )-ALPHI3( J ) ) )
TEMP2 = MAX( TEMP2, ABS( BETA1( J )-BETA3( J ) ) )
200 CONTINUE
*
TEMP1 = TEMP1 / MAX( SAFMIN, ULP*MAX( TEMP1, ANORM ) )
TEMP2 = TEMP2 / MAX( SAFMIN, ULP*MAX( TEMP2, BNORM ) )
RESULT( 15 ) = MAX( TEMP1, TEMP2 )
NTEST = 15
ELSE
RESULT( 13 ) = ZERO
RESULT( 14 ) = ZERO
RESULT( 15 ) = ZERO
NTEST = 12
END IF
*
* End of Loop -- Check for RESULT(j) > THRESH
*
210 CONTINUE
*
NTESTT = NTESTT + NTEST
*
* Print out tests which fail.
*
DO 220 JR = 1, NTEST
IF( RESULT( JR ).GE.THRESH ) THEN
*
* If this is the first test to fail,
* print a header to the data file.
*
IF( NERRS.EQ.0 ) THEN
WRITE( NOUNIT, FMT = 9997 )'DGG'
*
* Matrix types
*
WRITE( NOUNIT, FMT = 9996 )
WRITE( NOUNIT, FMT = 9995 )
WRITE( NOUNIT, FMT = 9994 )'Orthogonal'
*
* Tests performed
*
WRITE( NOUNIT, FMT = 9993 )'orthogonal', '''',
$ 'transpose', ( '''', J = 1, 10 )
*
END IF
NERRS = NERRS + 1
IF( RESULT( JR ).LT.10000.0D0 ) THEN
WRITE( NOUNIT, FMT = 9992 )N, JTYPE, IOLDSD, JR,
$ RESULT( JR )
ELSE
WRITE( NOUNIT, FMT = 9991 )N, JTYPE, IOLDSD, JR,
$ RESULT( JR )
END IF
END IF
220 CONTINUE
*
230 CONTINUE
240 CONTINUE
*
* Summary
*
CALL DLASUM( 'DGG', NOUNIT, NERRS, NTESTT )
RETURN
*
9999 FORMAT( ' DCHKGG: ', A, ' returned INFO=', I6, '.', / 9X, 'N=',
$ I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5, ')' )
*
9998 FORMAT( ' DCHKGG: ', A, ' Eigenvectors from ', A, ' incorrectly ',
$ 'normalized.', / ' Bits of error=', 0P, G10.3, ',', 9X,
$ 'N=', I6, ', JTYPE=', I6, ', ISEED=(', 3( I5, ',' ), I5,
$ ')' )
*
9997 FORMAT( / 1X, A3, ' -- Real Generalized eigenvalue problem' )
*
9996 FORMAT( ' Matrix types (see DCHKGG for details): ' )
*
9995 FORMAT( ' Special Matrices:', 23X,
$ '(J''=transposed Jordan block)',
$ / ' 1=(0,0) 2=(I,0) 3=(0,I) 4=(I,I) 5=(J'',J'') ',
$ '6=(diag(J'',I), diag(I,J''))', / ' Diagonal Matrices: ( ',
$ 'D=diag(0,1,2,...) )', / ' 7=(D,I) 9=(large*D, small*I',
$ ') 11=(large*I, small*D) 13=(large*D, large*I)', /
$ ' 8=(I,D) 10=(small*D, large*I) 12=(small*I, large*D) ',
$ ' 14=(small*D, small*I)', / ' 15=(D, reversed D)' )
9994 FORMAT( ' Matrices Rotated by Random ', A, ' Matrices U, V:',
$ / ' 16=Transposed Jordan Blocks 19=geometric ',
$ 'alpha, beta=0,1', / ' 17=arithm. alpha&beta ',
$ ' 20=arithmetic alpha, beta=0,1', / ' 18=clustered ',
$ 'alpha, beta=0,1 21=random alpha, beta=0,1',
$ / ' Large & Small Matrices:', / ' 22=(large, small) ',
$ '23=(small,large) 24=(small,small) 25=(large,large)',
$ / ' 26=random O(1) matrices.' )
*
9993 FORMAT( / ' Tests performed: (H is Hessenberg, S is Schur, B, ',
$ 'T, P are triangular,', / 20X, 'U, V, Q, and Z are ', A,
$ ', l and r are the', / 20X,
$ 'appropriate left and right eigenvectors, resp., a is',
$ / 20X, 'alpha, b is beta, and ', A, ' means ', A, '.)',
$ / ' 1 = | A - U H V', A,
$ ' | / ( |A| n ulp ) 2 = | B - U T V', A,
$ ' | / ( |B| n ulp )', / ' 3 = | I - UU', A,
$ ' | / ( n ulp ) 4 = | I - VV', A,
$ ' | / ( n ulp )', / ' 5 = | H - Q S Z', A,
$ ' | / ( |H| n ulp )', 6X, '6 = | T - Q P Z', A,
$ ' | / ( |T| n ulp )', / ' 7 = | I - QQ', A,
$ ' | / ( n ulp ) 8 = | I - ZZ', A,
$ ' | / ( n ulp )', / ' 9 = max | ( b S - a P )', A,
$ ' l | / const. 10 = max | ( b H - a T )', A,
$ ' l | / const.', /
$ ' 11= max | ( b S - a P ) r | / const. 12 = max | ( b H',
$ ' - a T ) r | / const.', / 1X )
*
9992 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
$ 4( I4, ',' ), ' result ', I2, ' is', 0P, F8.2 )
9991 FORMAT( ' Matrix order=', I5, ', type=', I2, ', seed=',
$ 4( I4, ',' ), ' result ', I2, ' is', 1P, D10.3 )
*
* End of DCHKGG
*
END
|