1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
*> \brief \b ZGET36
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZGET36( RMAX, LMAX, NINFO, KNT, NIN )
*
* .. Scalar Arguments ..
* INTEGER KNT, LMAX, NIN, NINFO
* DOUBLE PRECISION RMAX
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZGET36 tests ZTREXC, a routine for reordering diagonal entries of a
*> matrix in complex Schur form. Thus, ZLAEXC computes a unitary matrix
*> Q such that
*>
*> Q' * T1 * Q = T2
*>
*> and where one of the diagonal blocks of T1 (the one at row IFST) has
*> been moved to position ILST.
*>
*> The test code verifies that the residual Q'*T1*Q-T2 is small, that T2
*> is in Schur form, and that the final position of the IFST block is
*> ILST.
*>
*> The test matrices are read from a file with logical unit number NIN.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[out] RMAX
*> \verbatim
*> RMAX is DOUBLE PRECISION
*> Value of the largest test ratio.
*> \endverbatim
*>
*> \param[out] LMAX
*> \verbatim
*> LMAX is INTEGER
*> Example number where largest test ratio achieved.
*> \endverbatim
*>
*> \param[out] NINFO
*> \verbatim
*> NINFO is INTEGER
*> Number of examples where INFO is nonzero.
*> \endverbatim
*>
*> \param[out] KNT
*> \verbatim
*> KNT is INTEGER
*> Total number of examples tested.
*> \endverbatim
*>
*> \param[in] NIN
*> \verbatim
*> NIN is INTEGER
*> Input logical unit number.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_eig
*
* =====================================================================
SUBROUTINE ZGET36( RMAX, LMAX, NINFO, KNT, NIN )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER KNT, LMAX, NIN, NINFO
DOUBLE PRECISION RMAX
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
COMPLEX*16 CZERO, CONE
PARAMETER ( CZERO = ( 0.0D+0, 0.0D+0 ),
$ CONE = ( 1.0D+0, 0.0D+0 ) )
INTEGER LDT, LWORK
PARAMETER ( LDT = 10, LWORK = 2*LDT*LDT )
* ..
* .. Local Scalars ..
INTEGER I, IFST, ILST, INFO1, INFO2, J, N
DOUBLE PRECISION EPS, RES
COMPLEX*16 CTEMP
* ..
* .. Local Arrays ..
DOUBLE PRECISION RESULT( 2 ), RWORK( LDT )
COMPLEX*16 DIAG( LDT ), Q( LDT, LDT ), T1( LDT, LDT ),
$ T2( LDT, LDT ), TMP( LDT, LDT ), WORK( LWORK )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. External Subroutines ..
EXTERNAL ZCOPY, ZHST01, ZLACPY, ZLASET, ZTREXC
* ..
* .. Executable Statements ..
*
EPS = DLAMCH( 'P' )
RMAX = ZERO
LMAX = 0
KNT = 0
NINFO = 0
*
* Read input data until N=0
*
10 CONTINUE
READ( NIN, FMT = * )N, IFST, ILST
IF( N.EQ.0 )
$ RETURN
KNT = KNT + 1
DO 20 I = 1, N
READ( NIN, FMT = * )( TMP( I, J ), J = 1, N )
20 CONTINUE
CALL ZLACPY( 'F', N, N, TMP, LDT, T1, LDT )
CALL ZLACPY( 'F', N, N, TMP, LDT, T2, LDT )
RES = ZERO
*
* Test without accumulating Q
*
CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDT )
CALL ZTREXC( 'N', N, T1, LDT, Q, LDT, IFST, ILST, INFO1 )
DO 40 I = 1, N
DO 30 J = 1, N
IF( I.EQ.J .AND. Q( I, J ).NE.CONE )
$ RES = RES + ONE / EPS
IF( I.NE.J .AND. Q( I, J ).NE.CZERO )
$ RES = RES + ONE / EPS
30 CONTINUE
40 CONTINUE
*
* Test with accumulating Q
*
CALL ZLASET( 'Full', N, N, CZERO, CONE, Q, LDT )
CALL ZTREXC( 'V', N, T2, LDT, Q, LDT, IFST, ILST, INFO2 )
*
* Compare T1 with T2
*
DO 60 I = 1, N
DO 50 J = 1, N
IF( T1( I, J ).NE.T2( I, J ) )
$ RES = RES + ONE / EPS
50 CONTINUE
60 CONTINUE
IF( INFO1.NE.0 .OR. INFO2.NE.0 )
$ NINFO = NINFO + 1
IF( INFO1.NE.INFO2 )
$ RES = RES + ONE / EPS
*
* Test for successful reordering of T2
*
CALL ZCOPY( N, TMP, LDT+1, DIAG, 1 )
IF( IFST.LT.ILST ) THEN
DO 70 I = IFST + 1, ILST
CTEMP = DIAG( I )
DIAG( I ) = DIAG( I-1 )
DIAG( I-1 ) = CTEMP
70 CONTINUE
ELSE IF( IFST.GT.ILST ) THEN
DO 80 I = IFST - 1, ILST, -1
CTEMP = DIAG( I+1 )
DIAG( I+1 ) = DIAG( I )
DIAG( I ) = CTEMP
80 CONTINUE
END IF
DO 90 I = 1, N
IF( T2( I, I ).NE.DIAG( I ) )
$ RES = RES + ONE / EPS
90 CONTINUE
*
* Test for small residual, and orthogonality of Q
*
CALL ZHST01( N, 1, N, TMP, LDT, T2, LDT, Q, LDT, WORK, LWORK,
$ RWORK, RESULT )
RES = RES + RESULT( 1 ) + RESULT( 2 )
*
* Test for T2 being in Schur form
*
DO 110 J = 1, N - 1
DO 100 I = J + 1, N
IF( T2( I, J ).NE.CZERO )
$ RES = RES + ONE / EPS
100 CONTINUE
110 CONTINUE
IF( RES.GT.RMAX ) THEN
RMAX = RES
LMAX = KNT
END IF
GO TO 10
*
* End of ZGET36
*
END
|