1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234
|
*> \brief \b CGBT02
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
* LDB, RESID )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* INTEGER KL, KU, LDA, LDB, LDX, M, N, NRHS
* REAL RESID
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGBT02 computes the residual for a solution of a banded system of
*> equations A*x = b or A'*x = b:
*> RESID = norm( B - A*X ) / ( norm(A) * norm(X) * EPS).
*> where EPS is the machine precision.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> Specifies the form of the system of equations:
*> = 'N': A *x = b
*> = 'T': A'*x = b, where A' is the transpose of A
*> = 'C': A'*x = b, where A' is the transpose of A
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*> KL is INTEGER
*> The number of subdiagonals within the band of A. KL >= 0.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*> KU is INTEGER
*> The number of superdiagonals within the band of A. KU >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of columns of B. NRHS >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The original matrix A in band storage, stored in rows 1 to
*> KL+KU+1.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,KL+KU+1).
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension (LDX,NRHS)
*> The computed solution vectors for the system of linear
*> equations.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. If TRANS = 'N',
*> LDX >= max(1,N); if TRANS = 'T' or 'C', LDX >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,NRHS)
*> On entry, the right hand side vectors for the system of
*> linear equations.
*> On exit, B is overwritten with the difference B - A*X.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. IF TRANS = 'N',
*> LDB >= max(1,M); if TRANS = 'T' or 'C', LDB >= max(1,N).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> The maximum over the number of right hand sides of
*> norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CGBT02( TRANS, M, N, KL, KU, NRHS, A, LDA, X, LDX, B,
$ LDB, RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER KL, KU, LDA, LDB, LDX, M, N, NRHS
REAL RESID
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), B( LDB, * ), X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CONE
PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I1, I2, J, KD, N1
REAL ANORM, BNORM, EPS, XNORM
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SCASUM, SLAMCH
EXTERNAL LSAME, SCASUM, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CGBMV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Quick return if N = 0 pr NRHS = 0
*
IF( M.LE.0 .OR. N.LE.0 .OR. NRHS.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = SLAMCH( 'Epsilon' )
KD = KU + 1
ANORM = ZERO
DO 10 J = 1, N
I1 = MAX( KD+1-J, 1 )
I2 = MIN( KD+M-J, KL+KD )
ANORM = MAX( ANORM, SCASUM( I2-I1+1, A( I1, J ), 1 ) )
10 CONTINUE
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
IF( LSAME( TRANS, 'T' ) .OR. LSAME( TRANS, 'C' ) ) THEN
N1 = N
ELSE
N1 = M
END IF
*
* Compute B - A*X (or B - A'*X )
*
DO 20 J = 1, NRHS
CALL CGBMV( TRANS, M, N, KL, KU, -CONE, A, LDA, X( 1, J ), 1,
$ CONE, B( 1, J ), 1 )
20 CONTINUE
*
* Compute the maximum over the number of right hand sides of
* norm(B - A*X) / ( norm(A) * norm(X) * EPS ).
*
RESID = ZERO
DO 30 J = 1, NRHS
BNORM = SCASUM( N1, B( 1, J ), 1 )
XNORM = SCASUM( N1, X( 1, J ), 1 )
IF( XNORM.LE.ZERO ) THEN
RESID = ONE / EPS
ELSE
RESID = MAX( RESID, ( ( BNORM/ANORM )/XNORM )/EPS )
END IF
30 CONTINUE
*
RETURN
*
* End of CGBT02
*
END
|