1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
*> \brief \b CGET03
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
* RCOND, RESID )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDAINV, LDWORK, N
* REAL RCOND, RESID
* ..
* .. Array Arguments ..
* REAL RWORK( * )
* COMPLEX A( LDA, * ), AINV( LDAINV, * ),
* $ WORK( LDWORK, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGET03 computes the residual for a general matrix times its inverse:
*> norm( I - AINV*A ) / ( N * norm(A) * norm(AINV) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The original N x N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] AINV
*> \verbatim
*> AINV is COMPLEX array, dimension (LDAINV,N)
*> The inverse of the matrix A.
*> \endverbatim
*>
*> \param[in] LDAINV
*> \verbatim
*> LDAINV is INTEGER
*> The leading dimension of the array AINV. LDAINV >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LDWORK,N)
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*> LDWORK is INTEGER
*> The leading dimension of the array WORK. LDWORK >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is REAL
*> The reciprocal of the condition number of A, computed as
*> ( 1/norm(A) ) / norm(AINV).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> norm(I - AINV*A) / ( N * norm(A) * norm(AINV) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
$ RCOND, RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDAINV, LDWORK, N
REAL RCOND, RESID
* ..
* .. Array Arguments ..
REAL RWORK( * )
COMPLEX A( LDA, * ), AINV( LDAINV, * ),
$ WORK( LDWORK, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I
REAL AINVNM, ANORM, EPS
* ..
* .. External Functions ..
REAL CLANGE, SLAMCH
EXTERNAL CLANGE, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CGEMM
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RCOND = ONE
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = CLANGE( '1', N, N, A, LDA, RWORK )
AINVNM = CLANGE( '1', N, N, AINV, LDAINV, RWORK )
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCOND = ZERO
RESID = ONE / EPS
RETURN
END IF
RCOND = ( ONE/ANORM ) / AINVNM
*
* Compute I - A * AINV
*
CALL CGEMM( 'No transpose', 'No transpose', N, N, N, -CONE,
$ AINV, LDAINV, A, LDA, CZERO, WORK, LDWORK )
DO 10 I = 1, N
WORK( I, I ) = CONE + WORK( I, I )
10 CONTINUE
*
* Compute norm(I - AINV*A) / (N * norm(A) * norm(AINV) * EPS)
*
RESID = CLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
RESID = ( ( RESID*RCOND )/EPS ) / REAL( N )
*
RETURN
*
* End of CGET03
*
END
|