1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
*> \brief \b CHET01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CHET01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
* RWORK, RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDA, LDAFAC, LDC, N
* REAL RESID
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* REAL RWORK( * )
* COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CHET01 reconstructs a Hermitian indefinite matrix A from its
*> block L*D*L' or U*D*U' factorization and computes the residual
*> norm( C - A ) / ( N * norm(A) * EPS ),
*> where C is the reconstructed matrix, EPS is the machine epsilon,
*> L' is the conjugate transpose of L, and U' is the conjugate transpose
*> of U.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> Hermitian matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The original Hermitian matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N)
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*> AFAC is COMPLEX array, dimension (LDAFAC,N)
*> The factored form of the matrix A. AFAC contains the block
*> diagonal matrix D and the multipliers used to obtain the
*> factor L or U from the block L*D*L' or U*D*U' factorization
*> as computed by CHETRF.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*> LDAFAC is INTEGER
*> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices from CHETRF.
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is COMPLEX array, dimension (LDC,N)
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*> LDC is INTEGER
*> The leading dimension of the array C. LDC >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> If UPLO = 'L', norm(L*D*L' - A) / ( N * norm(A) * EPS )
*> If UPLO = 'U', norm(U*D*U' - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CHET01( UPLO, N, A, LDA, AFAC, LDAFAC, IPIV, C, LDC,
$ RWORK, RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDAFAC, LDC, N
REAL RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
REAL RWORK( * )
COMPLEX A( LDA, * ), AFAC( LDAFAC, * ), C( LDC, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J
REAL ANORM, EPS
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANHE, SLAMCH
EXTERNAL LSAME, CLANHE, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CLAVHE, CLASET
* ..
* .. Intrinsic Functions ..
INTRINSIC AIMAG, REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Determine EPS and the norm of A.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = CLANHE( '1', UPLO, N, A, LDA, RWORK )
*
* Check the imaginary parts of the diagonal elements and return with
* an error code if any are nonzero.
*
DO 10 J = 1, N
IF( AIMAG( AFAC( J, J ) ).NE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
10 CONTINUE
*
* Initialize C to the identity matrix.
*
CALL CLASET( 'Full', N, N, CZERO, CONE, C, LDC )
*
* Call CLAVHE to form the product D * U' (or D * L' ).
*
CALL CLAVHE( UPLO, 'Conjugate', 'Non-unit', N, N, AFAC, LDAFAC,
$ IPIV, C, LDC, INFO )
*
* Call CLAVHE again to multiply by U (or L ).
*
CALL CLAVHE( UPLO, 'No transpose', 'Unit', N, N, AFAC, LDAFAC,
$ IPIV, C, LDC, INFO )
*
* Compute the difference C - A .
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 30 J = 1, N
DO 20 I = 1, J - 1
C( I, J ) = C( I, J ) - A( I, J )
20 CONTINUE
C( J, J ) = C( J, J ) - REAL( A( J, J ) )
30 CONTINUE
ELSE
DO 50 J = 1, N
C( J, J ) = C( J, J ) - REAL( A( J, J ) )
DO 40 I = J + 1, N
C( I, J ) = C( I, J ) - A( I, J )
40 CONTINUE
50 CONTINUE
END IF
*
* Compute norm( C - A ) / ( N * norm(A) * EPS )
*
RESID = CLANHE( '1', UPLO, N, C, LDC, RWORK )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
END IF
*
RETURN
*
* End of CHET01
*
END
|