1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
*> \brief \b CLAPTM
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CLAPTM( UPLO, N, NRHS, ALPHA, D, E, X, LDX, BETA, B,
* LDB )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDB, LDX, N, NRHS
* REAL ALPHA, BETA
* ..
* .. Array Arguments ..
* REAL D( * )
* COMPLEX B( LDB, * ), E( * ), X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLAPTM multiplies an N by NRHS matrix X by a Hermitian tridiagonal
*> matrix A and stores the result in a matrix B. The operation has the
*> form
*>
*> B := alpha * A * X + beta * B
*>
*> where alpha may be either 1. or -1. and beta may be 0., 1., or -1.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER
*> Specifies whether the superdiagonal or the subdiagonal of the
*> tridiagonal matrix A is stored.
*> = 'U': Upper, E is the superdiagonal of A.
*> = 'L': Lower, E is the subdiagonal of A.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of the matrices X and B.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is REAL
*> The scalar alpha. ALPHA must be 1. or -1.; otherwise,
*> it is assumed to be 0.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is REAL array, dimension (N)
*> The n diagonal elements of the tridiagonal matrix A.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is COMPLEX array, dimension (N-1)
*> The (n-1) subdiagonal or superdiagonal elements of A.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is COMPLEX array, dimension (LDX,NRHS)
*> The N by NRHS matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X. LDX >= max(N,1).
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is REAL
*> The scalar beta. BETA must be 0., 1., or -1.; otherwise,
*> it is assumed to be 1.
*> \endverbatim
*>
*> \param[in,out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB,NRHS)
*> On entry, the N by NRHS matrix B.
*> On exit, B is overwritten by the matrix expression
*> B := alpha * A * X + beta * B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the array B. LDB >= max(N,1).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_lin
*
* =====================================================================
SUBROUTINE CLAPTM( UPLO, N, NRHS, ALPHA, D, E, X, LDX, BETA, B,
$ LDB )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDB, LDX, N, NRHS
REAL ALPHA, BETA
* ..
* .. Array Arguments ..
REAL D( * )
COMPLEX B( LDB, * ), E( * ), X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ONE, ZERO
PARAMETER ( ONE = 1.0E+0, ZERO = 0.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
* ..
* .. External Functions ..
LOGICAL LSAME
EXTERNAL LSAME
* ..
* .. Intrinsic Functions ..
INTRINSIC CONJG
* ..
* .. Executable Statements ..
*
IF( N.EQ.0 )
$ RETURN
*
IF( BETA.EQ.ZERO ) THEN
DO 20 J = 1, NRHS
DO 10 I = 1, N
B( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
ELSE IF( BETA.EQ.-ONE ) THEN
DO 40 J = 1, NRHS
DO 30 I = 1, N
B( I, J ) = -B( I, J )
30 CONTINUE
40 CONTINUE
END IF
*
IF( ALPHA.EQ.ONE ) THEN
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Compute B := B + A*X, where E is the superdiagonal of A.
*
DO 60 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
$ E( 1 )*X( 2, J )
B( N, J ) = B( N, J ) + CONJG( E( N-1 ) )*
$ X( N-1, J ) + D( N )*X( N, J )
DO 50 I = 2, N - 1
B( I, J ) = B( I, J ) + CONJG( E( I-1 ) )*
$ X( I-1, J ) + D( I )*X( I, J ) +
$ E( I )*X( I+1, J )
50 CONTINUE
END IF
60 CONTINUE
ELSE
*
* Compute B := B + A*X, where E is the subdiagonal of A.
*
DO 80 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) + D( 1 )*X( 1, J ) +
$ CONJG( E( 1 ) )*X( 2, J )
B( N, J ) = B( N, J ) + E( N-1 )*X( N-1, J ) +
$ D( N )*X( N, J )
DO 70 I = 2, N - 1
B( I, J ) = B( I, J ) + E( I-1 )*X( I-1, J ) +
$ D( I )*X( I, J ) +
$ CONJG( E( I ) )*X( I+1, J )
70 CONTINUE
END IF
80 CONTINUE
END IF
ELSE IF( ALPHA.EQ.-ONE ) THEN
IF( LSAME( UPLO, 'U' ) ) THEN
*
* Compute B := B - A*X, where E is the superdiagonal of A.
*
DO 100 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
$ E( 1 )*X( 2, J )
B( N, J ) = B( N, J ) - CONJG( E( N-1 ) )*
$ X( N-1, J ) - D( N )*X( N, J )
DO 90 I = 2, N - 1
B( I, J ) = B( I, J ) - CONJG( E( I-1 ) )*
$ X( I-1, J ) - D( I )*X( I, J ) -
$ E( I )*X( I+1, J )
90 CONTINUE
END IF
100 CONTINUE
ELSE
*
* Compute B := B - A*X, where E is the subdiagonal of A.
*
DO 120 J = 1, NRHS
IF( N.EQ.1 ) THEN
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J )
ELSE
B( 1, J ) = B( 1, J ) - D( 1 )*X( 1, J ) -
$ CONJG( E( 1 ) )*X( 2, J )
B( N, J ) = B( N, J ) - E( N-1 )*X( N-1, J ) -
$ D( N )*X( N, J )
DO 110 I = 2, N - 1
B( I, J ) = B( I, J ) - E( I-1 )*X( I-1, J ) -
$ D( I )*X( I, J ) -
$ CONJG( E( I ) )*X( I+1, J )
110 CONTINUE
END IF
120 CONTINUE
END IF
END IF
RETURN
*
* End of CLAPTM
*
END
|