1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230
|
*> \brief \b CQRT12
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* REAL FUNCTION CQRT12( M, N, A, LDA, S, WORK, LWORK,
* RWORK )
*
* .. Scalar Arguments ..
* INTEGER LDA, LWORK, M, N
* ..
* .. Array Arguments ..
* REAL RWORK( * ), S( * )
* COMPLEX A( LDA, * ), WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CQRT12 computes the singular values `svlues' of the upper trapezoid
*> of A(1:M,1:N) and returns the ratio
*>
*> || s - svlues||/(||svlues||*eps*max(M,N))
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The M-by-N matrix A. Only the upper trapezoid is referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is REAL array, dimension (min(M,N))
*> The singular values of the matrix A.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= M*N + 2*min(M,N) +
*> max(M,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (4*min(M,N))
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_lin
*
* =====================================================================
REAL FUNCTION CQRT12( M, N, A, LDA, S, WORK, LWORK,
$ RWORK )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LWORK, M, N
* ..
* .. Array Arguments ..
REAL RWORK( * ), S( * )
COMPLEX A( LDA, * ), WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
INTEGER I, INFO, ISCL, J, MN
REAL ANRM, BIGNUM, NRMSVL, SMLNUM
* ..
* .. Local Arrays ..
REAL DUMMY( 1 )
* ..
* .. External Functions ..
REAL CLANGE, SASUM, SLAMCH, SNRM2
EXTERNAL CLANGE, SASUM, SLAMCH, SNRM2
* ..
* .. External Subroutines ..
EXTERNAL CGEBD2, CLASCL, CLASET, SAXPY, SBDSQR, SLABAD,
$ SLASCL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
CQRT12 = ZERO
*
* Test that enough workspace is supplied
*
IF( LWORK.LT.M*N+2*MIN( M, N )+MAX( M, N ) ) THEN
CALL XERBLA( 'CQRT12', 7 )
RETURN
END IF
*
* Quick return if possible
*
MN = MIN( M, N )
IF( MN.LE.ZERO )
$ RETURN
*
NRMSVL = SNRM2( MN, S, 1 )
*
* Copy upper triangle of A into work
*
CALL CLASET( 'Full', M, N, CMPLX( ZERO ), CMPLX( ZERO ), WORK, M )
DO 20 J = 1, N
DO 10 I = 1, MIN( J, M )
WORK( ( J-1 )*M+I ) = A( I, J )
10 CONTINUE
20 CONTINUE
*
* Get machine parameters
*
SMLNUM = SLAMCH( 'S' ) / SLAMCH( 'P' )
BIGNUM = ONE / SMLNUM
CALL SLABAD( SMLNUM, BIGNUM )
*
* Scale work if max entry outside range [SMLNUM,BIGNUM]
*
ANRM = CLANGE( 'M', M, N, WORK, M, DUMMY )
ISCL = 0
IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
*
* Scale matrix norm up to SMLNUM
*
CALL CLASCL( 'G', 0, 0, ANRM, SMLNUM, M, N, WORK, M, INFO )
ISCL = 1
ELSE IF( ANRM.GT.BIGNUM ) THEN
*
* Scale matrix norm down to BIGNUM
*
CALL CLASCL( 'G', 0, 0, ANRM, BIGNUM, M, N, WORK, M, INFO )
ISCL = 1
END IF
*
IF( ANRM.NE.ZERO ) THEN
*
* Compute SVD of work
*
CALL CGEBD2( M, N, WORK, M, RWORK( 1 ), RWORK( MN+1 ),
$ WORK( M*N+1 ), WORK( M*N+MN+1 ),
$ WORK( M*N+2*MN+1 ), INFO )
CALL SBDSQR( 'Upper', MN, 0, 0, 0, RWORK( 1 ), RWORK( MN+1 ),
$ DUMMY, MN, DUMMY, 1, DUMMY, MN, RWORK( 2*MN+1 ),
$ INFO )
*
IF( ISCL.EQ.1 ) THEN
IF( ANRM.GT.BIGNUM ) THEN
CALL SLASCL( 'G', 0, 0, BIGNUM, ANRM, MN, 1, RWORK( 1 ),
$ MN, INFO )
END IF
IF( ANRM.LT.SMLNUM ) THEN
CALL SLASCL( 'G', 0, 0, SMLNUM, ANRM, MN, 1, RWORK( 1 ),
$ MN, INFO )
END IF
END IF
*
ELSE
*
DO 30 I = 1, MN
RWORK( I ) = ZERO
30 CONTINUE
END IF
*
* Compare s and singular values of work
*
CALL SAXPY( MN, -ONE, S, 1, RWORK( 1 ), 1 )
CQRT12 = SASUM( MN, RWORK( 1 ), 1 ) /
$ ( SLAMCH( 'Epsilon' )*REAL( MAX( M, N ) ) )
IF( NRMSVL.NE.ZERO )
$ CQRT12 = CQRT12 / NRMSVL
*
RETURN
*
* End of CQRT12
*
END
|