1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578
|
*> \brief \b DDRVPT
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
* E, B, X, XACT, WORK, RWORK, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NN, NOUT, NRHS
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER NVAL( * )
* DOUBLE PRECISION A( * ), B( * ), D( * ), E( * ), RWORK( * ),
* $ WORK( * ), X( * ), XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DDRVPT tests DPTSV and -SVX.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand side vectors to be generated for
*> each linear system.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (NMAX*2)
*> \endverbatim
*>
*> \param[out] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (NMAX*2)
*> \endverbatim
*>
*> \param[out] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (NMAX*2)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is DOUBLE PRECISION array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension
*> (NMAX*max(3,NRHS))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension
*> (max(NMAX,2*NRHS))
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, D,
$ E, B, X, XACT, WORK, RWORK, NOUT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NN, NOUT, NRHS
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER NVAL( * )
DOUBLE PRECISION A( * ), B( * ), D( * ), E( * ), RWORK( * ),
$ WORK( * ), X( * ), XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
INTEGER NTYPES
PARAMETER ( NTYPES = 12 )
INTEGER NTESTS
PARAMETER ( NTESTS = 6 )
* ..
* .. Local Scalars ..
LOGICAL ZEROT
CHARACTER DIST, FACT, TYPE
CHARACTER*3 PATH
INTEGER I, IA, IFACT, IMAT, IN, INFO, IX, IZERO, J, K,
$ K1, KL, KU, LDA, MODE, N, NERRS, NFAIL, NIMAT,
$ NRUN, NT
DOUBLE PRECISION AINVNM, ANORM, COND, DMAX, RCOND, RCONDC
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS ), Z( 3 )
* ..
* .. External Functions ..
INTEGER IDAMAX
DOUBLE PRECISION DASUM, DGET06, DLANST
EXTERNAL IDAMAX, DASUM, DGET06, DLANST
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, DCOPY, DERRVX, DGET04,
$ DLACPY, DLAPTM, DLARNV, DLASET, DLATB4, DLATMS,
$ DPTSV, DPTSVX, DPTT01, DPTT02, DPTT05, DPTTRF,
$ DPTTRS, DSCAL
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 0, 0, 0, 1 /
* ..
* .. Executable Statements ..
*
PATH( 1: 1 ) = 'Double precision'
PATH( 2: 3 ) = 'PT'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL DERRVX( PATH, NOUT )
INFOT = 0
*
DO 120 IN = 1, NN
*
* Do for each value of N in NVAL.
*
N = NVAL( IN )
LDA = MAX( 1, N )
NIMAT = NTYPES
IF( N.LE.0 )
$ NIMAT = 1
*
DO 110 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( N.GT.0 .AND. .NOT.DOTYPE( IMAT ) )
$ GO TO 110
*
* Set up parameters with DLATB4.
*
CALL DLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM, MODE,
$ COND, DIST )
*
ZEROT = IMAT.GE.8 .AND. IMAT.LE.10
IF( IMAT.LE.6 ) THEN
*
* Type 1-6: generate a symmetric tridiagonal matrix of
* known condition number in lower triangular band storage.
*
SRNAMT = 'DLATMS'
CALL DLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE, COND,
$ ANORM, KL, KU, 'B', A, 2, WORK, INFO )
*
* Check the error code from DLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'DLATMS', INFO, 0, ' ', N, N, KL,
$ KU, -1, IMAT, NFAIL, NERRS, NOUT )
GO TO 110
END IF
IZERO = 0
*
* Copy the matrix to D and E.
*
IA = 1
DO 20 I = 1, N - 1
D( I ) = A( IA )
E( I ) = A( IA+1 )
IA = IA + 2
20 CONTINUE
IF( N.GT.0 )
$ D( N ) = A( IA )
ELSE
*
* Type 7-12: generate a diagonally dominant matrix with
* unknown condition number in the vectors D and E.
*
IF( .NOT.ZEROT .OR. .NOT.DOTYPE( 7 ) ) THEN
*
* Let D and E have values from [-1,1].
*
CALL DLARNV( 2, ISEED, N, D )
CALL DLARNV( 2, ISEED, N-1, E )
*
* Make the tridiagonal matrix diagonally dominant.
*
IF( N.EQ.1 ) THEN
D( 1 ) = ABS( D( 1 ) )
ELSE
D( 1 ) = ABS( D( 1 ) ) + ABS( E( 1 ) )
D( N ) = ABS( D( N ) ) + ABS( E( N-1 ) )
DO 30 I = 2, N - 1
D( I ) = ABS( D( I ) ) + ABS( E( I ) ) +
$ ABS( E( I-1 ) )
30 CONTINUE
END IF
*
* Scale D and E so the maximum element is ANORM.
*
IX = IDAMAX( N, D, 1 )
DMAX = D( IX )
CALL DSCAL( N, ANORM / DMAX, D, 1 )
IF( N.GT.1 )
$ CALL DSCAL( N-1, ANORM / DMAX, E, 1 )
*
ELSE IF( IZERO.GT.0 ) THEN
*
* Reuse the last matrix by copying back the zeroed out
* elements.
*
IF( IZERO.EQ.1 ) THEN
D( 1 ) = Z( 2 )
IF( N.GT.1 )
$ E( 1 ) = Z( 3 )
ELSE IF( IZERO.EQ.N ) THEN
E( N-1 ) = Z( 1 )
D( N ) = Z( 2 )
ELSE
E( IZERO-1 ) = Z( 1 )
D( IZERO ) = Z( 2 )
E( IZERO ) = Z( 3 )
END IF
END IF
*
* For types 8-10, set one row and column of the matrix to
* zero.
*
IZERO = 0
IF( IMAT.EQ.8 ) THEN
IZERO = 1
Z( 2 ) = D( 1 )
D( 1 ) = ZERO
IF( N.GT.1 ) THEN
Z( 3 ) = E( 1 )
E( 1 ) = ZERO
END IF
ELSE IF( IMAT.EQ.9 ) THEN
IZERO = N
IF( N.GT.1 ) THEN
Z( 1 ) = E( N-1 )
E( N-1 ) = ZERO
END IF
Z( 2 ) = D( N )
D( N ) = ZERO
ELSE IF( IMAT.EQ.10 ) THEN
IZERO = ( N+1 ) / 2
IF( IZERO.GT.1 ) THEN
Z( 1 ) = E( IZERO-1 )
Z( 3 ) = E( IZERO )
E( IZERO-1 ) = ZERO
E( IZERO ) = ZERO
END IF
Z( 2 ) = D( IZERO )
D( IZERO ) = ZERO
END IF
END IF
*
* Generate NRHS random solution vectors.
*
IX = 1
DO 40 J = 1, NRHS
CALL DLARNV( 2, ISEED, N, XACT( IX ) )
IX = IX + LDA
40 CONTINUE
*
* Set the right hand side.
*
CALL DLAPTM( N, NRHS, ONE, D, E, XACT, LDA, ZERO, B, LDA )
*
DO 100 IFACT = 1, 2
IF( IFACT.EQ.1 ) THEN
FACT = 'F'
ELSE
FACT = 'N'
END IF
*
* Compute the condition number for comparison with
* the value returned by DPTSVX.
*
IF( ZEROT ) THEN
IF( IFACT.EQ.1 )
$ GO TO 100
RCONDC = ZERO
*
ELSE IF( IFACT.EQ.1 ) THEN
*
* Compute the 1-norm of A.
*
ANORM = DLANST( '1', N, D, E )
*
CALL DCOPY( N, D, 1, D( N+1 ), 1 )
IF( N.GT.1 )
$ CALL DCOPY( N-1, E, 1, E( N+1 ), 1 )
*
* Factor the matrix A.
*
CALL DPTTRF( N, D( N+1 ), E( N+1 ), INFO )
*
* Use DPTTRS to solve for one column at a time of
* inv(A), computing the maximum column sum as we go.
*
AINVNM = ZERO
DO 60 I = 1, N
DO 50 J = 1, N
X( J ) = ZERO
50 CONTINUE
X( I ) = ONE
CALL DPTTRS( N, 1, D( N+1 ), E( N+1 ), X, LDA,
$ INFO )
AINVNM = MAX( AINVNM, DASUM( N, X, 1 ) )
60 CONTINUE
*
* Compute the 1-norm condition number of A.
*
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDC = ONE
ELSE
RCONDC = ( ONE / ANORM ) / AINVNM
END IF
END IF
*
IF( IFACT.EQ.2 ) THEN
*
* --- Test DPTSV --
*
CALL DCOPY( N, D, 1, D( N+1 ), 1 )
IF( N.GT.1 )
$ CALL DCOPY( N-1, E, 1, E( N+1 ), 1 )
CALL DLACPY( 'Full', N, NRHS, B, LDA, X, LDA )
*
* Factor A as L*D*L' and solve the system A*X = B.
*
SRNAMT = 'DPTSV '
CALL DPTSV( N, NRHS, D( N+1 ), E( N+1 ), X, LDA,
$ INFO )
*
* Check error code from DPTSV .
*
IF( INFO.NE.IZERO )
$ CALL ALAERH( PATH, 'DPTSV ', INFO, IZERO, ' ', N,
$ N, 1, 1, NRHS, IMAT, NFAIL, NERRS,
$ NOUT )
NT = 0
IF( IZERO.EQ.0 ) THEN
*
* Check the factorization by computing the ratio
* norm(L*D*L' - A) / (n * norm(A) * EPS )
*
CALL DPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
$ RESULT( 1 ) )
*
* Compute the residual in the solution.
*
CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
CALL DPTT02( N, NRHS, D, E, X, LDA, WORK, LDA,
$ RESULT( 2 ) )
*
* Check solution from generated exact solution.
*
CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
$ RESULT( 3 ) )
NT = 3
END IF
*
* Print information about the tests that did not pass
* the threshold.
*
DO 70 K = 1, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )'DPTSV ', N, IMAT, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
70 CONTINUE
NRUN = NRUN + NT
END IF
*
* --- Test DPTSVX ---
*
IF( IFACT.GT.1 ) THEN
*
* Initialize D( N+1:2*N ) and E( N+1:2*N ) to zero.
*
DO 80 I = 1, N - 1
D( N+I ) = ZERO
E( N+I ) = ZERO
80 CONTINUE
IF( N.GT.0 )
$ D( N+N ) = ZERO
END IF
*
CALL DLASET( 'Full', N, NRHS, ZERO, ZERO, X, LDA )
*
* Solve the system and compute the condition number and
* error bounds using DPTSVX.
*
SRNAMT = 'DPTSVX'
CALL DPTSVX( FACT, N, NRHS, D, E, D( N+1 ), E( N+1 ), B,
$ LDA, X, LDA, RCOND, RWORK, RWORK( NRHS+1 ),
$ WORK, INFO )
*
* Check the error code from DPTSVX.
*
IF( INFO.NE.IZERO )
$ CALL ALAERH( PATH, 'DPTSVX', INFO, IZERO, FACT, N, N,
$ 1, 1, NRHS, IMAT, NFAIL, NERRS, NOUT )
IF( IZERO.EQ.0 ) THEN
IF( IFACT.EQ.2 ) THEN
*
* Check the factorization by computing the ratio
* norm(L*D*L' - A) / (n * norm(A) * EPS )
*
K1 = 1
CALL DPTT01( N, D, E, D( N+1 ), E( N+1 ), WORK,
$ RESULT( 1 ) )
ELSE
K1 = 2
END IF
*
* Compute the residual in the solution.
*
CALL DLACPY( 'Full', N, NRHS, B, LDA, WORK, LDA )
CALL DPTT02( N, NRHS, D, E, X, LDA, WORK, LDA,
$ RESULT( 2 ) )
*
* Check solution from generated exact solution.
*
CALL DGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
$ RESULT( 3 ) )
*
* Check error bounds from iterative refinement.
*
CALL DPTT05( N, NRHS, D, E, B, LDA, X, LDA, XACT, LDA,
$ RWORK, RWORK( NRHS+1 ), RESULT( 4 ) )
ELSE
K1 = 6
END IF
*
* Check the reciprocal of the condition number.
*
RESULT( 6 ) = DGET06( RCOND, RCONDC )
*
* Print information about the tests that did not pass
* the threshold.
*
DO 90 K = K1, 6
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
WRITE( NOUT, FMT = 9998 )'DPTSVX', FACT, N, IMAT,
$ K, RESULT( K )
NFAIL = NFAIL + 1
END IF
90 CONTINUE
NRUN = NRUN + 7 - K1
100 CONTINUE
110 CONTINUE
120 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( 1X, A, ', N =', I5, ', type ', I2, ', test ', I2,
$ ', ratio = ', G12.5 )
9998 FORMAT( 1X, A, ', FACT=''', A1, ''', N =', I5, ', type ', I2,
$ ', test ', I2, ', ratio = ', G12.5 )
RETURN
*
* End of DDRVPT
*
END
|