1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
|
*> \brief \b DERRGT
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DERRGT( PATH, NUNIT )
*
* .. Scalar Arguments ..
* CHARACTER*3 PATH
* INTEGER NUNIT
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DERRGT tests the error exits for the DOUBLE PRECISION tridiagonal
*> routines.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] PATH
*> \verbatim
*> PATH is CHARACTER*3
*> The LAPACK path name for the routines to be tested.
*> \endverbatim
*>
*> \param[in] NUNIT
*> \verbatim
*> NUNIT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DERRGT( PATH, NUNIT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER*3 PATH
INTEGER NUNIT
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 2 )
* ..
* .. Local Scalars ..
CHARACTER*2 C2
INTEGER INFO
DOUBLE PRECISION ANORM, RCOND
* ..
* .. Local Arrays ..
INTEGER IP( NMAX ), IW( NMAX )
DOUBLE PRECISION B( NMAX ), C( NMAX ), CF( NMAX ), D( NMAX ),
$ DF( NMAX ), E( NMAX ), EF( NMAX ), F( NMAX ),
$ R1( NMAX ), R2( NMAX ), W( NMAX ), X( NMAX )
* ..
* .. External Functions ..
LOGICAL LSAMEN
EXTERNAL LSAMEN
* ..
* .. External Subroutines ..
EXTERNAL ALAESM, CHKXER, DGTCON, DGTRFS, DGTTRF, DGTTRS,
$ DPTCON, DPTRFS, DPTTRF, DPTTRS
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NOUT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NOUT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Executable Statements ..
*
NOUT = NUNIT
WRITE( NOUT, FMT = * )
C2 = PATH( 2: 3 )
D( 1 ) = 1.D0
D( 2 ) = 2.D0
DF( 1 ) = 1.D0
DF( 2 ) = 2.D0
E( 1 ) = 3.D0
E( 2 ) = 4.D0
EF( 1 ) = 3.D0
EF( 2 ) = 4.D0
ANORM = 1.0D0
OK = .TRUE.
*
IF( LSAMEN( 2, C2, 'GT' ) ) THEN
*
* Test error exits for the general tridiagonal routines.
*
* DGTTRF
*
SRNAMT = 'DGTTRF'
INFOT = 1
CALL DGTTRF( -1, C, D, E, F, IP, INFO )
CALL CHKXER( 'DGTTRF', INFOT, NOUT, LERR, OK )
*
* DGTTRS
*
SRNAMT = 'DGTTRS'
INFOT = 1
CALL DGTTRS( '/', 0, 0, C, D, E, F, IP, X, 1, INFO )
CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DGTTRS( 'N', -1, 0, C, D, E, F, IP, X, 1, INFO )
CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DGTTRS( 'N', 0, -1, C, D, E, F, IP, X, 1, INFO )
CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DGTTRS( 'N', 2, 1, C, D, E, F, IP, X, 1, INFO )
CALL CHKXER( 'DGTTRS', INFOT, NOUT, LERR, OK )
*
* DGTRFS
*
SRNAMT = 'DGTRFS'
INFOT = 1
CALL DGTRFS( '/', 0, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X, 1,
$ R1, R2, W, IW, INFO )
CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DGTRFS( 'N', -1, 0, C, D, E, CF, DF, EF, F, IP, B, 1, X,
$ 1, R1, R2, W, IW, INFO )
CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 3
CALL DGTRFS( 'N', 0, -1, C, D, E, CF, DF, EF, F, IP, B, 1, X,
$ 1, R1, R2, W, IW, INFO )
CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 13
CALL DGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 1, X, 2,
$ R1, R2, W, IW, INFO )
CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
INFOT = 15
CALL DGTRFS( 'N', 2, 1, C, D, E, CF, DF, EF, F, IP, B, 2, X, 1,
$ R1, R2, W, IW, INFO )
CALL CHKXER( 'DGTRFS', INFOT, NOUT, LERR, OK )
*
* DGTCON
*
SRNAMT = 'DGTCON'
INFOT = 1
CALL DGTCON( '/', 0, C, D, E, F, IP, ANORM, RCOND, W, IW,
$ INFO )
CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DGTCON( 'I', -1, C, D, E, F, IP, ANORM, RCOND, W, IW,
$ INFO )
CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DGTCON( 'I', 0, C, D, E, F, IP, -ANORM, RCOND, W, IW,
$ INFO )
CALL CHKXER( 'DGTCON', INFOT, NOUT, LERR, OK )
*
ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN
*
* Test error exits for the positive definite tridiagonal
* routines.
*
* DPTTRF
*
SRNAMT = 'DPTTRF'
INFOT = 1
CALL DPTTRF( -1, D, E, INFO )
CALL CHKXER( 'DPTTRF', INFOT, NOUT, LERR, OK )
*
* DPTTRS
*
SRNAMT = 'DPTTRS'
INFOT = 1
CALL DPTTRS( -1, 0, D, E, X, 1, INFO )
CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPTTRS( 0, -1, D, E, X, 1, INFO )
CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK )
INFOT = 6
CALL DPTTRS( 2, 1, D, E, X, 1, INFO )
CALL CHKXER( 'DPTTRS', INFOT, NOUT, LERR, OK )
*
* DPTRFS
*
SRNAMT = 'DPTRFS'
INFOT = 1
CALL DPTRFS( -1, 0, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO )
CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK )
INFOT = 2
CALL DPTRFS( 0, -1, D, E, DF, EF, B, 1, X, 1, R1, R2, W, INFO )
CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK )
INFOT = 8
CALL DPTRFS( 2, 1, D, E, DF, EF, B, 1, X, 2, R1, R2, W, INFO )
CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK )
INFOT = 10
CALL DPTRFS( 2, 1, D, E, DF, EF, B, 2, X, 1, R1, R2, W, INFO )
CALL CHKXER( 'DPTRFS', INFOT, NOUT, LERR, OK )
*
* DPTCON
*
SRNAMT = 'DPTCON'
INFOT = 1
CALL DPTCON( -1, D, E, ANORM, RCOND, W, INFO )
CALL CHKXER( 'DPTCON', INFOT, NOUT, LERR, OK )
INFOT = 4
CALL DPTCON( 0, D, E, -ANORM, RCOND, W, INFO )
CALL CHKXER( 'DPTCON', INFOT, NOUT, LERR, OK )
END IF
*
* Print a summary line.
*
CALL ALAESM( PATH, OK, NOUT )
*
RETURN
*
* End of DERRGT
*
END
|