1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
*> \brief \b DGET01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
* RESID )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDAFAC, M, N
* DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
* INTEGER IPIV( * )
* DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGET01 reconstructs a matrix A from its L*U factorization and
*> computes the residual
*> norm(L*U - A) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> The original M x N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in,out] AFAC
*> \verbatim
*> AFAC is DOUBLE PRECISION array, dimension (LDAFAC,N)
*> The factored form of the matrix A. AFAC contains the factors
*> L and U from the L*U factorization as computed by DGETRF.
*> Overwritten with the reconstructed matrix, and then with the
*> difference L*U - A.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*> LDAFAC is INTEGER
*> The leading dimension of the array AFAC. LDAFAC >= max(1,M).
*> \endverbatim
*>
*> \param[in] IPIV
*> \verbatim
*> IPIV is INTEGER array, dimension (N)
*> The pivot indices from DGETRF.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> norm(L*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_lin
*
* =====================================================================
SUBROUTINE DGET01( M, N, A, LDA, AFAC, LDAFAC, IPIV, RWORK,
$ RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDAFAC, M, N
DOUBLE PRECISION RESID
* ..
* .. Array Arguments ..
INTEGER IPIV( * )
DOUBLE PRECISION A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
* ..
*
* =====================================================================
*
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K
DOUBLE PRECISION ANORM, EPS, T
* ..
* .. External Functions ..
DOUBLE PRECISION DDOT, DLAMCH, DLANGE
EXTERNAL DDOT, DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DGEMV, DLASWP, DSCAL, DTRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MIN
* ..
* .. Executable Statements ..
*
* Quick exit if M = 0 or N = 0.
*
IF( M.LE.0 .OR. N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Determine EPS and the norm of A.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = DLANGE( '1', M, N, A, LDA, RWORK )
*
* Compute the product L*U and overwrite AFAC with the result.
* A column at a time of the product is obtained, starting with
* column N.
*
DO 10 K = N, 1, -1
IF( K.GT.M ) THEN
CALL DTRMV( 'Lower', 'No transpose', 'Unit', M, AFAC,
$ LDAFAC, AFAC( 1, K ), 1 )
ELSE
*
* Compute elements (K+1:M,K)
*
T = AFAC( K, K )
IF( K+1.LE.M ) THEN
CALL DSCAL( M-K, T, AFAC( K+1, K ), 1 )
CALL DGEMV( 'No transpose', M-K, K-1, ONE,
$ AFAC( K+1, 1 ), LDAFAC, AFAC( 1, K ), 1, ONE,
$ AFAC( K+1, K ), 1 )
END IF
*
* Compute the (K,K) element
*
AFAC( K, K ) = T + DDOT( K-1, AFAC( K, 1 ), LDAFAC,
$ AFAC( 1, K ), 1 )
*
* Compute elements (1:K-1,K)
*
CALL DTRMV( 'Lower', 'No transpose', 'Unit', K-1, AFAC,
$ LDAFAC, AFAC( 1, K ), 1 )
END IF
10 CONTINUE
CALL DLASWP( N, AFAC, LDAFAC, 1, MIN( M, N ), IPIV, -1 )
*
* Compute the difference L*U - A and store in AFAC.
*
DO 30 J = 1, N
DO 20 I = 1, M
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
20 CONTINUE
30 CONTINUE
*
* Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
RESID = DLANGE( '1', M, N, AFAC, LDAFAC, RWORK )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
RESID = ( ( RESID / DBLE( N ) ) / ANORM ) / EPS
END IF
*
RETURN
*
* End of DGET01
*
END
|