1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902
|
*> \brief \b SCHKAA
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* PROGRAM SCHKAA
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SCHKAA is the main test program for the REAL LAPACK
*> linear equation routines
*>
*> The program must be driven by a short data file. The first 15 records
*> (not including the first comment line) specify problem dimensions
*> and program options using list-directed input. The remaining lines
*> specify the LAPACK test paths and the number of matrix types to use
*> in testing. An annotated example of a data file can be obtained by
*> deleting the first 3 characters from the following 40 lines:
*> Data file for testing REAL LAPACK linear eqn. routines
*> 7 Number of values of M
*> 0 1 2 3 5 10 16 Values of M (row dimension)
*> 7 Number of values of N
*> 0 1 2 3 5 10 16 Values of N (column dimension)
*> 1 Number of values of NRHS
*> 2 Values of NRHS (number of right hand sides)
*> 5 Number of values of NB
*> 1 3 3 3 20 Values of NB (the blocksize)
*> 1 0 5 9 1 Values of NX (crossover point)
*> 3 Number of values of RANK
*> 30 50 90 Values of rank (as a % of N)
*> 20.0 Threshold value of test ratio
*> T Put T to test the LAPACK routines
*> T Put T to test the driver routines
*> T Put T to test the error exits
*> SGE 11 List types on next line if 0 < NTYPES < 11
*> SGB 8 List types on next line if 0 < NTYPES < 8
*> SGT 12 List types on next line if 0 < NTYPES < 12
*> SPO 9 List types on next line if 0 < NTYPES < 9
*> SPS 9 List types on next line if 0 < NTYPES < 9
*> SPP 9 List types on next line if 0 < NTYPES < 9
*> SPB 8 List types on next line if 0 < NTYPES < 8
*> SPT 12 List types on next line if 0 < NTYPES < 12
*> SSY 10 List types on next line if 0 < NTYPES < 10
*> SSR 10 List types on next line if 0 < NTYPES < 10
*> SSP 10 List types on next line if 0 < NTYPES < 10
*> STR 18 List types on next line if 0 < NTYPES < 18
*> STP 18 List types on next line if 0 < NTYPES < 18
*> STB 17 List types on next line if 0 < NTYPES < 17
*> SQR 8 List types on next line if 0 < NTYPES < 8
*> SRQ 8 List types on next line if 0 < NTYPES < 8
*> SLQ 8 List types on next line if 0 < NTYPES < 8
*> SQL 8 List types on next line if 0 < NTYPES < 8
*> SQP 6 List types on next line if 0 < NTYPES < 6
*> STZ 3 List types on next line if 0 < NTYPES < 3
*> SLS 6 List types on next line if 0 < NTYPES < 6
*> SEQ
*> SQT
*> SQX
*> \endverbatim
*
* Parameters:
* ==========
*
*> \verbatim
*> NMAX INTEGER
*> The maximum allowable value for M and N.
*>
*> MAXIN INTEGER
*> The number of different values that can be used for each of
*> M, N, NRHS, NB, NX and RANK
*>
*> MAXRHS INTEGER
*> The maximum number of right hand sides
*>
*> MATMAX INTEGER
*> The maximum number of matrix types to use for testing
*>
*> NIN INTEGER
*> The unit number for input
*>
*> NOUT INTEGER
*> The unit number for output
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date April 2012
*
*> \ingroup single_lin
*
* =====================================================================
PROGRAM SCHKAA
*
* -- LAPACK test routine (version 3.4.1) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* April 2012
*
* =====================================================================
*
* .. Parameters ..
INTEGER NMAX
PARAMETER ( NMAX = 132 )
INTEGER MAXIN
PARAMETER ( MAXIN = 12 )
INTEGER MAXRHS
PARAMETER ( MAXRHS = 16 )
INTEGER MATMAX
PARAMETER ( MATMAX = 30 )
INTEGER NIN, NOUT
PARAMETER ( NIN = 5, NOUT = 6 )
INTEGER KDMAX
PARAMETER ( KDMAX = NMAX+( NMAX+1 ) / 4 )
* ..
* .. Local Scalars ..
LOGICAL FATAL, TSTCHK, TSTDRV, TSTERR
CHARACTER C1
CHARACTER*2 C2
CHARACTER*3 PATH
CHARACTER*10 INTSTR
CHARACTER*72 ALINE
INTEGER I, IC, J, K, LA, LAFAC, LDA, NB, NM, NMATS, NN,
$ NNB, NNB2, NNS, NRHS, NTYPES, NRANK,
$ VERS_MAJOR, VERS_MINOR, VERS_PATCH
REAL EPS, S1, S2, THREQ, THRESH
* ..
* .. Local Arrays ..
LOGICAL DOTYPE( MATMAX )
INTEGER IWORK( 25*NMAX ), MVAL( MAXIN ),
$ NBVAL( MAXIN ), NBVAL2( MAXIN ),
$ NSVAL( MAXIN ), NVAL( MAXIN ), NXVAL( MAXIN ),
$ RANKVAL( MAXIN ), PIV( NMAX )
REAL A( ( KDMAX+1 )*NMAX, 7 ), B( NMAX*MAXRHS, 4 ),
$ RWORK( 5*NMAX+2*MAXRHS ), S( 2*NMAX ),
$ WORK( NMAX, NMAX+MAXRHS+30 )
* ..
* .. External Functions ..
LOGICAL LSAME, LSAMEN
REAL SECOND, SLAMCH
EXTERNAL LSAME, LSAMEN, SECOND, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL ALAREQ, SCHKEQ, SCHKGB, SCHKGE, SCHKGT, SCHKLQ,
$ SCHKPB, SCHKPO, SCHKPS, SCHKPP, SCHKPT, SCHKQ3,
$ SCHKQL, SCHKQP, SCHKQR, SCHKRQ, SCHKSP, SCHKSY,
$ SCHKTB, SCHKTP, SCHKTR, SCHKTZ,
$ SDRVGB, SDRVGE, SDRVGT, SDRVLS, SDRVPB, SDRVPO,
$ SDRVPP, SDRVPT, SDRVSP, SDRVSY,
$ ILAVER, SCHKQRT, SCHKQRTP
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Arrays in Common ..
INTEGER IPARMS( 100 )
* ..
* .. Common blocks ..
COMMON / CLAENV / IPARMS
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA THREQ / 2.0E0 / , INTSTR / '0123456789' /
* ..
* .. Executable Statements ..
*
S1 = SECOND( )
LDA = NMAX
FATAL = .FALSE.
*
* Read a dummy line.
*
READ( NIN, FMT = * )
*
* Report values of parameters.
*
CALL ILAVER( VERS_MAJOR, VERS_MINOR, VERS_PATCH )
WRITE( NOUT, FMT = 9994 ) VERS_MAJOR, VERS_MINOR, VERS_PATCH
*
* Read the values of M
*
READ( NIN, FMT = * )NM
IF( NM.LT.1 ) THEN
WRITE( NOUT, FMT = 9996 )' NM ', NM, 1
NM = 0
FATAL = .TRUE.
ELSE IF( NM.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9995 )' NM ', NM, MAXIN
NM = 0
FATAL = .TRUE.
END IF
READ( NIN, FMT = * )( MVAL( I ), I = 1, NM )
DO 10 I = 1, NM
IF( MVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9996 )' M ', MVAL( I ), 0
FATAL = .TRUE.
ELSE IF( MVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9995 )' M ', MVAL( I ), NMAX
FATAL = .TRUE.
END IF
10 CONTINUE
IF( NM.GT.0 )
$ WRITE( NOUT, FMT = 9993 )'M ', ( MVAL( I ), I = 1, NM )
*
* Read the values of N
*
READ( NIN, FMT = * )NN
IF( NN.LT.1 ) THEN
WRITE( NOUT, FMT = 9996 )' NN ', NN, 1
NN = 0
FATAL = .TRUE.
ELSE IF( NN.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9995 )' NN ', NN, MAXIN
NN = 0
FATAL = .TRUE.
END IF
READ( NIN, FMT = * )( NVAL( I ), I = 1, NN )
DO 20 I = 1, NN
IF( NVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9996 )' N ', NVAL( I ), 0
FATAL = .TRUE.
ELSE IF( NVAL( I ).GT.NMAX ) THEN
WRITE( NOUT, FMT = 9995 )' N ', NVAL( I ), NMAX
FATAL = .TRUE.
END IF
20 CONTINUE
IF( NN.GT.0 )
$ WRITE( NOUT, FMT = 9993 )'N ', ( NVAL( I ), I = 1, NN )
*
* Read the values of NRHS
*
READ( NIN, FMT = * )NNS
IF( NNS.LT.1 ) THEN
WRITE( NOUT, FMT = 9996 )' NNS', NNS, 1
NNS = 0
FATAL = .TRUE.
ELSE IF( NNS.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9995 )' NNS', NNS, MAXIN
NNS = 0
FATAL = .TRUE.
END IF
READ( NIN, FMT = * )( NSVAL( I ), I = 1, NNS )
DO 30 I = 1, NNS
IF( NSVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9996 )'NRHS', NSVAL( I ), 0
FATAL = .TRUE.
ELSE IF( NSVAL( I ).GT.MAXRHS ) THEN
WRITE( NOUT, FMT = 9995 )'NRHS', NSVAL( I ), MAXRHS
FATAL = .TRUE.
END IF
30 CONTINUE
IF( NNS.GT.0 )
$ WRITE( NOUT, FMT = 9993 )'NRHS', ( NSVAL( I ), I = 1, NNS )
*
* Read the values of NB
*
READ( NIN, FMT = * )NNB
IF( NNB.LT.1 ) THEN
WRITE( NOUT, FMT = 9996 )'NNB ', NNB, 1
NNB = 0
FATAL = .TRUE.
ELSE IF( NNB.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9995 )'NNB ', NNB, MAXIN
NNB = 0
FATAL = .TRUE.
END IF
READ( NIN, FMT = * )( NBVAL( I ), I = 1, NNB )
DO 40 I = 1, NNB
IF( NBVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9996 )' NB ', NBVAL( I ), 0
FATAL = .TRUE.
END IF
40 CONTINUE
IF( NNB.GT.0 )
$ WRITE( NOUT, FMT = 9993 )'NB ', ( NBVAL( I ), I = 1, NNB )
*
* Set NBVAL2 to be the set of unique values of NB
*
NNB2 = 0
DO 60 I = 1, NNB
NB = NBVAL( I )
DO 50 J = 1, NNB2
IF( NB.EQ.NBVAL2( J ) )
$ GO TO 60
50 CONTINUE
NNB2 = NNB2 + 1
NBVAL2( NNB2 ) = NB
60 CONTINUE
*
* Read the values of NX
*
READ( NIN, FMT = * )( NXVAL( I ), I = 1, NNB )
DO 70 I = 1, NNB
IF( NXVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9996 )' NX ', NXVAL( I ), 0
FATAL = .TRUE.
END IF
70 CONTINUE
IF( NNB.GT.0 )
$ WRITE( NOUT, FMT = 9993 )'NX ', ( NXVAL( I ), I = 1, NNB )
*
* Read the values of RANKVAL
*
READ( NIN, FMT = * )NRANK
IF( NN.LT.1 ) THEN
WRITE( NOUT, FMT = 9996 )' NRANK ', NRANK, 1
NRANK = 0
FATAL = .TRUE.
ELSE IF( NN.GT.MAXIN ) THEN
WRITE( NOUT, FMT = 9995 )' NRANK ', NRANK, MAXIN
NRANK = 0
FATAL = .TRUE.
END IF
READ( NIN, FMT = * )( RANKVAL( I ), I = 1, NRANK )
DO I = 1, NRANK
IF( RANKVAL( I ).LT.0 ) THEN
WRITE( NOUT, FMT = 9996 )' RANK ', RANKVAL( I ), 0
FATAL = .TRUE.
ELSE IF( RANKVAL( I ).GT.100 ) THEN
WRITE( NOUT, FMT = 9995 )' RANK ', RANKVAL( I ), 100
FATAL = .TRUE.
END IF
END DO
IF( NRANK.GT.0 )
$ WRITE( NOUT, FMT = 9993 )'RANK % OF N',
$ ( RANKVAL( I ), I = 1, NRANK )
*
* Read the threshold value for the test ratios.
*
READ( NIN, FMT = * )THRESH
WRITE( NOUT, FMT = 9992 )THRESH
*
* Read the flag that indicates whether to test the LAPACK routines.
*
READ( NIN, FMT = * )TSTCHK
*
* Read the flag that indicates whether to test the driver routines.
*
READ( NIN, FMT = * )TSTDRV
*
* Read the flag that indicates whether to test the error exits.
*
READ( NIN, FMT = * )TSTERR
*
IF( FATAL ) THEN
WRITE( NOUT, FMT = 9999 )
STOP
END IF
*
* Calculate and print the machine dependent constants.
*
EPS = SLAMCH( 'Underflow threshold' )
WRITE( NOUT, FMT = 9991 )'underflow', EPS
EPS = SLAMCH( 'Overflow threshold' )
WRITE( NOUT, FMT = 9991 )'overflow ', EPS
EPS = SLAMCH( 'Epsilon' )
WRITE( NOUT, FMT = 9991 )'precision', EPS
WRITE( NOUT, FMT = * )
*
80 CONTINUE
*
* Read a test path and the number of matrix types to use.
*
READ( NIN, FMT = '(A72)', END = 140 )ALINE
PATH = ALINE( 1: 3 )
NMATS = MATMAX
I = 3
90 CONTINUE
I = I + 1
IF( I.GT.72 ) THEN
NMATS = MATMAX
GO TO 130
END IF
IF( ALINE( I: I ).EQ.' ' )
$ GO TO 90
NMATS = 0
100 CONTINUE
C1 = ALINE( I: I )
DO 110 K = 1, 10
IF( C1.EQ.INTSTR( K: K ) ) THEN
IC = K - 1
GO TO 120
END IF
110 CONTINUE
GO TO 130
120 CONTINUE
NMATS = NMATS*10 + IC
I = I + 1
IF( I.GT.72 )
$ GO TO 130
GO TO 100
130 CONTINUE
C1 = PATH( 1: 1 )
C2 = PATH( 2: 3 )
NRHS = NSVAL( 1 )
*
* Check first character for correct precision.
*
IF( .NOT.LSAME( C1, 'Single precision' ) ) THEN
WRITE( NOUT, FMT = 9990 )PATH
*
ELSE IF( NMATS.LE.0 ) THEN
*
* Check for a positive number of tests requested.
*
WRITE( NOUT, FMT = 9989 )PATH
*
ELSE IF( LSAMEN( 2, C2, 'GE' ) ) THEN
*
* GE: general matrices
*
NTYPES = 11
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKGE( DOTYPE, NM, MVAL, NN, NVAL, NNB2, NBVAL2, NNS,
$ NSVAL, THRESH, TSTERR, LDA, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), B( 1, 1 ), B( 1, 2 ),
$ B( 1, 3 ), WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL SDRVGE( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S, WORK,
$ RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'GB' ) ) THEN
*
* GB: general banded matrices
*
LA = ( 2*KDMAX+1 )*NMAX
LAFAC = ( 3*KDMAX+1 )*NMAX
NTYPES = 8
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKGB( DOTYPE, NM, MVAL, NN, NVAL, NNB2, NBVAL2, NNS,
$ NSVAL, THRESH, TSTERR, A( 1, 1 ), LA,
$ A( 1, 3 ), LAFAC, B( 1, 1 ), B( 1, 2 ),
$ B( 1, 3 ), WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL SDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR,
$ A( 1, 1 ), LA, A( 1, 3 ), LAFAC, A( 1, 6 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S,
$ WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'GT' ) ) THEN
*
* GT: general tridiagonal matrices
*
NTYPES = 12
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKGT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
$ B( 1, 3 ), WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL SDRVGT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR,
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ), B( 1, 2 ),
$ B( 1, 3 ), WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'PO' ) ) THEN
*
* PO: positive definite matrices
*
NTYPES = 9
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKPO( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL,
$ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ),
$ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
$ WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL SDRVPO( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S, WORK,
$ RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'PS' ) ) THEN
*
* PS: positive semi-definite matrices
*
NTYPES = 9
*
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKPS( DOTYPE, NN, NVAL, NNB2, NBVAL2, NRANK,
$ RANKVAL, THRESH, TSTERR, LDA, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), PIV, WORK, RWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'PP' ) ) THEN
*
* PP: positive definite packed matrices
*
NTYPES = 9
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKPP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ LDA, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, RWORK,
$ IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL SDRVPP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S, WORK,
$ RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'PB' ) ) THEN
*
* PB: positive definite banded matrices
*
NTYPES = 8
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKPB( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL,
$ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ),
$ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
$ WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL SDRVPB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), B( 1, 4 ), S, WORK,
$ RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'PT' ) ) THEN
*
* PT: positive definite tridiagonal matrices
*
NTYPES = 12
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKPT( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL SDRVPT( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'SY' ) ) THEN
*
* SY: symmetric indefinite matrices,
* with partial (Bunch-Kaufman) pivoting algorithm
*
NTYPES = 10
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKSY( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL,
$ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ),
$ A( 1, 3 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
$ WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL SDRVSY( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, IWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'SP' ) ) THEN
*
* SP: symmetric indefinite packed matrices,
* with partial (Bunch-Kaufman) pivoting algorithm
*
NTYPES = 10
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKSP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ LDA, A( 1, 1 ), A( 1, 2 ), A( 1, 3 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, RWORK,
$ IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
IF( TSTDRV ) THEN
CALL SDRVSP( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, LDA,
$ A( 1, 1 ), A( 1, 2 ), A( 1, 3 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, IWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'TR' ) ) THEN
*
* TR: triangular matrices
*
NTYPES = 18
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKTR( DOTYPE, NN, NVAL, NNB2, NBVAL2, NNS, NSVAL,
$ THRESH, TSTERR, LDA, A( 1, 1 ), A( 1, 2 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), WORK, RWORK,
$ IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'TP' ) ) THEN
*
* TP: triangular packed matrices
*
NTYPES = 18
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKTP( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ LDA, A( 1, 1 ), A( 1, 2 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, IWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'TB' ) ) THEN
*
* TB: triangular banded matrices
*
NTYPES = 17
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKTB( DOTYPE, NN, NVAL, NNS, NSVAL, THRESH, TSTERR,
$ LDA, A( 1, 1 ), A( 1, 2 ), B( 1, 1 ),
$ B( 1, 2 ), B( 1, 3 ), WORK, RWORK, IWORK,
$ NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'QR' ) ) THEN
*
* QR: QR factorization
*
NTYPES = 8
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKQR( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ NRHS, THRESH, TSTERR, NMAX, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ),
$ WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'LQ' ) ) THEN
*
* LQ: LQ factorization
*
NTYPES = 8
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKLQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ NRHS, THRESH, TSTERR, NMAX, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ),
$ WORK, RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'QL' ) ) THEN
*
* QL: QL factorization
*
NTYPES = 8
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKQL( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ NRHS, THRESH, TSTERR, NMAX, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ),
$ WORK, RWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'RQ' ) ) THEN
*
* RQ: RQ factorization
*
NTYPES = 8
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKRQ( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ NRHS, THRESH, TSTERR, NMAX, A( 1, 1 ),
$ A( 1, 2 ), A( 1, 3 ), A( 1, 4 ), A( 1, 5 ),
$ B( 1, 1 ), B( 1, 2 ), B( 1, 3 ), B( 1, 4 ),
$ WORK, RWORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'QP' ) ) THEN
*
* QP: QR factorization with pivoting
*
NTYPES = 6
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKQP( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR,
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ),
$ B( 1, 3 ), WORK, IWORK, NOUT )
CALL SCHKQ3( DOTYPE, NM, MVAL, NN, NVAL, NNB, NBVAL, NXVAL,
$ THRESH, A( 1, 1 ), A( 1, 2 ), B( 1, 1 ),
$ B( 1, 3 ), WORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'TZ' ) ) THEN
*
* TZ: Trapezoidal matrix
*
NTYPES = 3
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTCHK ) THEN
CALL SCHKTZ( DOTYPE, NM, MVAL, NN, NVAL, THRESH, TSTERR,
$ A( 1, 1 ), A( 1, 2 ), B( 1, 1 ),
$ B( 1, 3 ), WORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'LS' ) ) THEN
*
* LS: Least squares drivers
*
NTYPES = 6
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
*
IF( TSTDRV ) THEN
CALL SDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ NBVAL, NXVAL, THRESH, TSTERR, A( 1, 1 ),
$ A( 1, 2 ), B( 1, 1 ), B( 1, 2 ), B( 1, 3 ),
$ RWORK, RWORK( NMAX+1 ), WORK, IWORK, NOUT )
ELSE
WRITE( NOUT, FMT = 9988 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'EQ' ) ) THEN
*
* EQ: Equilibration routines for general and positive definite
* matrices (THREQ should be between 2 and 10)
*
IF( TSTCHK ) THEN
CALL SCHKEQ( THREQ, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'QT' ) ) THEN
*
* QT: QRT routines for general matrices
*
IF( TSTCHK ) THEN
CALL SCHKQRT( THRESH, TSTERR, NM, MVAL, NN, NVAL, NNB,
$ NBVAL, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE IF( LSAMEN( 2, C2, 'QX' ) ) THEN
*
* QX: QRT routines for triangular-pentagonal matrices
*
IF( TSTCHK ) THEN
CALL SCHKQRTP( THRESH, TSTERR, NM, MVAL, NN, NVAL, NNB,
$ NBVAL, NOUT )
ELSE
WRITE( NOUT, FMT = 9989 )PATH
END IF
*
ELSE
*
WRITE( NOUT, FMT = 9990 )PATH
END IF
*
* Go back to get another input line.
*
GO TO 80
*
* Branch to this line when the last record is read.
*
140 CONTINUE
CLOSE ( NIN )
S2 = SECOND( )
WRITE( NOUT, FMT = 9998 )
WRITE( NOUT, FMT = 9997 )S2 - S1
*
9999 FORMAT( / ' Execution not attempted due to input errors' )
9998 FORMAT( / ' End of tests' )
9997 FORMAT( ' Total time used = ', F12.2, ' seconds', / )
9996 FORMAT( ' Invalid input value: ', A4, '=', I6, '; must be >=',
$ I6 )
9995 FORMAT( ' Invalid input value: ', A4, '=', I6, '; must be <=',
$ I6 )
9994 FORMAT( ' Tests of the REAL LAPACK routines ',
$ / ' LAPACK VERSION ', I1, '.', I1, '.', I1,
$ / / ' The following parameter values will be used:' )
9993 FORMAT( 4X, A4, ': ', 10I6, / 11X, 10I6 )
9992 FORMAT( / ' Routines pass computational tests if test ratio is ',
$ 'less than', F8.2, / )
9991 FORMAT( ' Relative machine ', A, ' is taken to be', E16.6 )
9990 FORMAT( / 1X, A3, ': Unrecognized path name' )
9989 FORMAT( / 1X, A3, ' routines were not tested' )
9988 FORMAT( / 1X, A3, ' driver routines were not tested' )
*
* End of SCHKAA
*
END
|