1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246
|
*> \brief \b SPBT01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
* RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER KD, LDA, LDAFAC, N
* REAL RESID
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SPBT01 reconstructs a symmetric positive definite band matrix A from
*> its L*L' or U'*U factorization and computes the residual
*> norm( L*L' - A ) / ( N * norm(A) * EPS ) or
*> norm( U'*U - A ) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon, L' is the conjugate transpose of
*> L, and U' is the conjugate transpose of U.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*> KD is INTEGER
*> The number of super-diagonals of the matrix A if UPLO = 'U',
*> or the number of sub-diagonals if UPLO = 'L'. KD >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> The original symmetric band matrix A. If UPLO = 'U', the
*> upper triangular part of A is stored as a band matrix; if
*> UPLO = 'L', the lower triangular part of A is stored. The
*> columns of the appropriate triangle are stored in the columns
*> of A and the diagonals of the triangle are stored in the rows
*> of A. See SPBTRF for further details.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER.
*> The leading dimension of the array A. LDA >= max(1,KD+1).
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*> AFAC is REAL array, dimension (LDAFAC,N)
*> The factored form of the matrix A. AFAC contains the factor
*> L or U from the L*L' or U'*U factorization in band storage
*> format, as computed by SPBTRF.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*> LDAFAC is INTEGER
*> The leading dimension of the array AFAC.
*> LDAFAC >= max(1,KD+1).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
*> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SPBT01( UPLO, N, KD, A, LDA, AFAC, LDAFAC, RWORK,
$ RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER KD, LDA, LDAFAC, N
REAL RESID
* ..
* .. Array Arguments ..
REAL A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
* ..
*
* =====================================================================
*
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K, KC, KLEN, ML, MU
REAL ANORM, EPS, T
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SDOT, SLAMCH, SLANSB
EXTERNAL LSAME, SDOT, SLAMCH, SLANSB
* ..
* .. External Subroutines ..
EXTERNAL SSCAL, SSYR, STRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = SLANSB( '1', UPLO, N, KD, A, LDA, RWORK )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute the product U'*U, overwriting U.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 10 K = N, 1, -1
KC = MAX( 1, KD+2-K )
KLEN = KD + 1 - KC
*
* Compute the (K,K) element of the result.
*
T = SDOT( KLEN+1, AFAC( KC, K ), 1, AFAC( KC, K ), 1 )
AFAC( KD+1, K ) = T
*
* Compute the rest of column K.
*
IF( KLEN.GT.0 )
$ CALL STRMV( 'Upper', 'Transpose', 'Non-unit', KLEN,
$ AFAC( KD+1, K-KLEN ), LDAFAC-1,
$ AFAC( KC, K ), 1 )
*
10 CONTINUE
*
* UPLO = 'L': Compute the product L*L', overwriting L.
*
ELSE
DO 20 K = N, 1, -1
KLEN = MIN( KD, N-K )
*
* Add a multiple of column K of the factor L to each of
* columns K+1 through N.
*
IF( KLEN.GT.0 )
$ CALL SSYR( 'Lower', KLEN, ONE, AFAC( 2, K ), 1,
$ AFAC( 1, K+1 ), LDAFAC-1 )
*
* Scale column K by the diagonal element.
*
T = AFAC( 1, K )
CALL SSCAL( KLEN+1, T, AFAC( 1, K ), 1 )
*
20 CONTINUE
END IF
*
* Compute the difference L*L' - A or U'*U - A.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 40 J = 1, N
MU = MAX( 1, KD+2-J )
DO 30 I = MU, KD + 1
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
30 CONTINUE
40 CONTINUE
ELSE
DO 60 J = 1, N
ML = MIN( KD+1, N-J+1 )
DO 50 I = 1, ML
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
50 CONTINUE
60 CONTINUE
END IF
*
* Compute norm( L*L' - A ) / ( N * norm(A) * EPS )
*
RESID = SLANSB( 'I', UPLO, N, KD, AFAC, LDAFAC, RWORK )
*
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
*
RETURN
*
* End of SPBT01
*
END
|