1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223
|
*> \brief \b SPOT01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDA, LDAFAC, N
* REAL RESID
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SPOT01 reconstructs a symmetric positive definite matrix A from
*> its L*L' or U'*U factorization and computes the residual
*> norm( L*L' - A ) / ( N * norm(A) * EPS ) or
*> norm( U'*U - A ) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> The original symmetric matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N)
*> \endverbatim
*>
*> \param[in,out] AFAC
*> \verbatim
*> AFAC is REAL array, dimension (LDAFAC,N)
*> On entry, the factor L or U from the L*L' or U'*U
*> factorization of A.
*> Overwritten with the reconstructed matrix, and then with the
*> difference L*L' - A (or U'*U - A).
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*> LDAFAC is INTEGER
*> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
*> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SPOT01( UPLO, N, A, LDA, AFAC, LDAFAC, RWORK, RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDA, LDAFAC, N
REAL RESID
* ..
* .. Array Arguments ..
REAL A( LDA, * ), AFAC( LDAFAC, * ), RWORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J, K
REAL ANORM, EPS, T
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SDOT, SLAMCH, SLANSY
EXTERNAL LSAME, SDOT, SLAMCH, SLANSY
* ..
* .. External Subroutines ..
EXTERNAL SSCAL, SSYR, STRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute the product U'*U, overwriting U.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 10 K = N, 1, -1
*
* Compute the (K,K) element of the result.
*
T = SDOT( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 )
AFAC( K, K ) = T
*
* Compute the rest of column K.
*
CALL STRMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC,
$ LDAFAC, AFAC( 1, K ), 1 )
*
10 CONTINUE
*
* Compute the product L*L', overwriting L.
*
ELSE
DO 20 K = N, 1, -1
*
* Add a multiple of column K of the factor L to each of
* columns K+1 through N.
*
IF( K+1.LE.N )
$ CALL SSYR( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
$ AFAC( K+1, K+1 ), LDAFAC )
*
* Scale column K by the diagonal element.
*
T = AFAC( K, K )
CALL SSCAL( N-K+1, T, AFAC( K, K ), 1 )
*
20 CONTINUE
END IF
*
* Compute the difference L*L' - A (or U'*U - A).
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 40 J = 1, N
DO 30 I = 1, J
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
30 CONTINUE
40 CONTINUE
ELSE
DO 60 J = 1, N
DO 50 I = J, N
AFAC( I, J ) = AFAC( I, J ) - A( I, J )
50 CONTINUE
60 CONTINUE
END IF
*
* Compute norm( L*U - A ) / ( N * norm(A) * EPS )
*
RESID = SLANSY( '1', UPLO, N, AFAC, LDAFAC, RWORK )
*
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
*
RETURN
*
* End of SPOT01
*
END
|