1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306
|
*> \brief \b SPST01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE SPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
* PIV, RWORK, RESID, RANK )
*
* .. Scalar Arguments ..
* REAL RESID
* INTEGER LDA, LDAFAC, LDPERM, N, RANK
* CHARACTER UPLO
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), AFAC( LDAFAC, * ),
* $ PERM( LDPERM, * ), RWORK( * )
* INTEGER PIV( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SPST01 reconstructs a symmetric positive semidefinite matrix A
*> from its L or U factors and the permutation matrix P and computes
*> the residual
*> norm( P*L*L'*P' - A ) / ( N * norm(A) * EPS ) or
*> norm( P*U'*U*P' - A ) / ( N * norm(A) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> symmetric matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> The original symmetric matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N)
*> \endverbatim
*>
*> \param[in] AFAC
*> \verbatim
*> AFAC is REAL array, dimension (LDAFAC,N)
*> The factor L or U from the L*L' or U'*U
*> factorization of A.
*> \endverbatim
*>
*> \param[in] LDAFAC
*> \verbatim
*> LDAFAC is INTEGER
*> The leading dimension of the array AFAC. LDAFAC >= max(1,N).
*> \endverbatim
*>
*> \param[out] PERM
*> \verbatim
*> PERM is REAL array, dimension (LDPERM,N)
*> Overwritten with the reconstructed matrix, and then with the
*> difference P*L*L'*P' - A (or P*U'*U*P' - A)
*> \endverbatim
*>
*> \param[in] LDPERM
*> \verbatim
*> LDPERM is INTEGER
*> The leading dimension of the array PERM.
*> LDAPERM >= max(1,N).
*> \endverbatim
*>
*> \param[in] PIV
*> \verbatim
*> PIV is INTEGER array, dimension (N)
*> PIV is such that the nonzero entries are
*> P( PIV( K ), K ) = 1.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> If UPLO = 'L', norm(L*L' - A) / ( N * norm(A) * EPS )
*> If UPLO = 'U', norm(U'*U - A) / ( N * norm(A) * EPS )
*> \endverbatim
*>
*> \param[in] RANK
*> \verbatim
*> RANK is INTEGER
*> number of nonzero singular values of A.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_lin
*
* =====================================================================
SUBROUTINE SPST01( UPLO, N, A, LDA, AFAC, LDAFAC, PERM, LDPERM,
$ PIV, RWORK, RESID, RANK )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
REAL RESID
INTEGER LDA, LDAFAC, LDPERM, N, RANK
CHARACTER UPLO
* ..
* .. Array Arguments ..
REAL A( LDA, * ), AFAC( LDAFAC, * ),
$ PERM( LDPERM, * ), RWORK( * )
INTEGER PIV( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
REAL ANORM, EPS, T
INTEGER I, J, K
* ..
* .. External Functions ..
REAL SDOT, SLAMCH, SLANSY
LOGICAL LSAME
EXTERNAL SDOT, SLAMCH, SLANSY, LSAME
* ..
* .. External Subroutines ..
EXTERNAL SSCAL, SSYR, STRMV
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0.
*
EPS = SLAMCH( 'Epsilon' )
ANORM = SLANSY( '1', UPLO, N, A, LDA, RWORK )
IF( ANORM.LE.ZERO ) THEN
RESID = ONE / EPS
RETURN
END IF
*
* Compute the product U'*U, overwriting U.
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
IF( RANK.LT.N ) THEN
DO 110 J = RANK + 1, N
DO 100 I = RANK + 1, J
AFAC( I, J ) = ZERO
100 CONTINUE
110 CONTINUE
END IF
*
DO 120 K = N, 1, -1
*
* Compute the (K,K) element of the result.
*
T = SDOT( K, AFAC( 1, K ), 1, AFAC( 1, K ), 1 )
AFAC( K, K ) = T
*
* Compute the rest of column K.
*
CALL STRMV( 'Upper', 'Transpose', 'Non-unit', K-1, AFAC,
$ LDAFAC, AFAC( 1, K ), 1 )
*
120 CONTINUE
*
* Compute the product L*L', overwriting L.
*
ELSE
*
IF( RANK.LT.N ) THEN
DO 140 J = RANK + 1, N
DO 130 I = J, N
AFAC( I, J ) = ZERO
130 CONTINUE
140 CONTINUE
END IF
*
DO 150 K = N, 1, -1
* Add a multiple of column K of the factor L to each of
* columns K+1 through N.
*
IF( K+1.LE.N )
$ CALL SSYR( 'Lower', N-K, ONE, AFAC( K+1, K ), 1,
$ AFAC( K+1, K+1 ), LDAFAC )
*
* Scale column K by the diagonal element.
*
T = AFAC( K, K )
CALL SSCAL( N-K+1, T, AFAC( K, K ), 1 )
150 CONTINUE
*
END IF
*
* Form P*L*L'*P' or P*U'*U*P'
*
IF( LSAME( UPLO, 'U' ) ) THEN
*
DO 170 J = 1, N
DO 160 I = 1, N
IF( PIV( I ).LE.PIV( J ) ) THEN
IF( I.LE.J ) THEN
PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
ELSE
PERM( PIV( I ), PIV( J ) ) = AFAC( J, I )
END IF
END IF
160 CONTINUE
170 CONTINUE
*
*
ELSE
*
DO 190 J = 1, N
DO 180 I = 1, N
IF( PIV( I ).GE.PIV( J ) ) THEN
IF( I.GE.J ) THEN
PERM( PIV( I ), PIV( J ) ) = AFAC( I, J )
ELSE
PERM( PIV( I ), PIV( J ) ) = AFAC( J, I )
END IF
END IF
180 CONTINUE
190 CONTINUE
*
END IF
*
* Compute the difference P*L*L'*P' - A (or P*U'*U*P' - A).
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 210 J = 1, N
DO 200 I = 1, J
PERM( I, J ) = PERM( I, J ) - A( I, J )
200 CONTINUE
210 CONTINUE
ELSE
DO 230 J = 1, N
DO 220 I = J, N
PERM( I, J ) = PERM( I, J ) - A( I, J )
220 CONTINUE
230 CONTINUE
END IF
*
* Compute norm( P*L*L'P - A ) / ( N * norm(A) * EPS ), or
* ( P*U'*U*P' - A )/ ( N * norm(A) * EPS ).
*
RESID = SLANSY( '1', UPLO, N, PERM, LDAFAC, RWORK )
*
RESID = ( ( RESID / REAL( N ) ) / ANORM ) / EPS
*
RETURN
*
* End of SPST01
*
END
|