1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
*> \brief \b SQRT11
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* REAL FUNCTION SQRT11( M, K, A, LDA, TAU, WORK, LWORK )
*
* .. Scalar Arguments ..
* INTEGER K, LDA, LWORK, M
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SQRT11 computes the test ratio
*>
*> || Q'*Q - I || / (eps * m)
*>
*> where the orthogonal matrix Q is represented as a product of
*> elementary transformations. Each transformation has the form
*>
*> H(k) = I - tau(k) v(k) v(k)'
*>
*> where tau(k) is stored in TAU(k) and v(k) is an m-vector of the form
*> [ 0 ... 0 1 x(k) ]', where x(k) is a vector of length m-k stored
*> in A(k+1:m,k).
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of columns of A whose subdiagonal entries
*> contain information about orthogonal transformations.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,K)
*> The (possibly partial) output of a QR reduction routine.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is REAL array, dimension (K)
*> The scaling factors tau for the elementary transformations as
*> computed by the QR factorization routine.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= M*M + M.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_lin
*
* =====================================================================
REAL FUNCTION SQRT11( M, K, A, LDA, TAU, WORK, LWORK )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER K, LDA, LWORK, M
* ..
* .. Array Arguments ..
REAL A( LDA, * ), TAU( * ), WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
INTEGER INFO, J
* ..
* .. External Functions ..
REAL SLAMCH, SLANGE
EXTERNAL SLAMCH, SLANGE
* ..
* .. External Subroutines ..
EXTERNAL SLASET, SORM2R, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC REAL
* ..
* .. Local Arrays ..
REAL RDUMMY( 1 )
* ..
* .. Executable Statements ..
*
SQRT11 = ZERO
*
* Test for sufficient workspace
*
IF( LWORK.LT.M*M+M ) THEN
CALL XERBLA( 'SQRT11', 7 )
RETURN
END IF
*
* Quick return if possible
*
IF( M.LE.0 )
$ RETURN
*
CALL SLASET( 'Full', M, M, ZERO, ONE, WORK, M )
*
* Form Q
*
CALL SORM2R( 'Left', 'No transpose', M, M, K, A, LDA, TAU, WORK,
$ M, WORK( M*M+1 ), INFO )
*
* Form Q'*Q
*
CALL SORM2R( 'Left', 'Transpose', M, M, K, A, LDA, TAU, WORK, M,
$ WORK( M*M+1 ), INFO )
*
DO 10 J = 1, M
WORK( ( J-1 )*M+J ) = WORK( ( J-1 )*M+J ) - ONE
10 CONTINUE
*
SQRT11 = SLANGE( 'One-norm', M, M, WORK, M, RDUMMY ) /
$ ( REAL( M )*SLAMCH( 'Epsilon' ) )
*
RETURN
*
* End of SQRT11
*
END
|