1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
*> \brief \b SQRT14
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* REAL FUNCTION SQRT14( TRANS, M, N, NRHS, A, LDA, X,
* LDX, WORK, LWORK )
*
* .. Scalar Arguments ..
* CHARACTER TRANS
* INTEGER LDA, LDX, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
* REAL A( LDA, * ), WORK( LWORK ), X( LDX, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SQRT14 checks whether X is in the row space of A or A'. It does so
*> by scaling both X and A such that their norms are in the range
*> [sqrt(eps), 1/sqrt(eps)], then computing a QR factorization of [A,X]
*> (if TRANS = 'T') or an LQ factorization of [A',X]' (if TRANS = 'N'),
*> and returning the norm of the trailing triangle, scaled by
*> MAX(M,N,NRHS)*eps.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TRANS
*> \verbatim
*> TRANS is CHARACTER*1
*> = 'N': No transpose, check for X in the row space of A
*> = 'T': Transpose, check for X in the row space of A'.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrix A.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrix A.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand sides, i.e., the number of columns
*> of X.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is REAL array, dimension (LDA,N)
*> The M-by-N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A.
*> \endverbatim
*>
*> \param[in] X
*> \verbatim
*> X is REAL array, dimension (LDX,NRHS)
*> If TRANS = 'N', the N-by-NRHS matrix X.
*> IF TRANS = 'T', the M-by-NRHS matrix X.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of the array X.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is REAL array dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> length of workspace array required
*> If TRANS = 'N', LWORK >= (M+NRHS)*(N+2);
*> if TRANS = 'T', LWORK >= (N+NRHS)*(M+2).
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup single_lin
*
* =====================================================================
REAL FUNCTION SQRT14( TRANS, M, N, NRHS, A, LDA, X,
$ LDX, WORK, LWORK )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER TRANS
INTEGER LDA, LDX, LWORK, M, N, NRHS
* ..
* .. Array Arguments ..
REAL A( LDA, * ), WORK( LWORK ), X( LDX, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E0, ONE = 1.0E0 )
* ..
* .. Local Scalars ..
LOGICAL TPSD
INTEGER I, INFO, J, LDWORK
REAL ANRM, ERR, XNRM
* ..
* .. Local Arrays ..
REAL RWORK( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SLAMCH, SLANGE
EXTERNAL LSAME, SLAMCH, SLANGE
* ..
* .. External Subroutines ..
EXTERNAL SGELQ2, SGEQR2, SLACPY, SLASCL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
SQRT14 = ZERO
IF( LSAME( TRANS, 'N' ) ) THEN
LDWORK = M + NRHS
TPSD = .FALSE.
IF( LWORK.LT.( M+NRHS )*( N+2 ) ) THEN
CALL XERBLA( 'SQRT14', 10 )
RETURN
ELSE IF( N.LE.0 .OR. NRHS.LE.0 ) THEN
RETURN
END IF
ELSE IF( LSAME( TRANS, 'T' ) ) THEN
LDWORK = M
TPSD = .TRUE.
IF( LWORK.LT.( N+NRHS )*( M+2 ) ) THEN
CALL XERBLA( 'SQRT14', 10 )
RETURN
ELSE IF( M.LE.0 .OR. NRHS.LE.0 ) THEN
RETURN
END IF
ELSE
CALL XERBLA( 'SQRT14', 1 )
RETURN
END IF
*
* Copy and scale A
*
CALL SLACPY( 'All', M, N, A, LDA, WORK, LDWORK )
ANRM = SLANGE( 'M', M, N, WORK, LDWORK, RWORK )
IF( ANRM.NE.ZERO )
$ CALL SLASCL( 'G', 0, 0, ANRM, ONE, M, N, WORK, LDWORK, INFO )
*
* Copy X or X' into the right place and scale it
*
IF( TPSD ) THEN
*
* Copy X into columns n+1:n+nrhs of work
*
CALL SLACPY( 'All', M, NRHS, X, LDX, WORK( N*LDWORK+1 ),
$ LDWORK )
XNRM = SLANGE( 'M', M, NRHS, WORK( N*LDWORK+1 ), LDWORK,
$ RWORK )
IF( XNRM.NE.ZERO )
$ CALL SLASCL( 'G', 0, 0, XNRM, ONE, M, NRHS,
$ WORK( N*LDWORK+1 ), LDWORK, INFO )
ANRM = SLANGE( 'One-norm', M, N+NRHS, WORK, LDWORK, RWORK )
*
* Compute QR factorization of X
*
CALL SGEQR2( M, N+NRHS, WORK, LDWORK,
$ WORK( LDWORK*( N+NRHS )+1 ),
$ WORK( LDWORK*( N+NRHS )+MIN( M, N+NRHS )+1 ),
$ INFO )
*
* Compute largest entry in upper triangle of
* work(n+1:m,n+1:n+nrhs)
*
ERR = ZERO
DO 20 J = N + 1, N + NRHS
DO 10 I = N + 1, MIN( M, J )
ERR = MAX( ERR, ABS( WORK( I+( J-1 )*M ) ) )
10 CONTINUE
20 CONTINUE
*
ELSE
*
* Copy X' into rows m+1:m+nrhs of work
*
DO 40 I = 1, N
DO 30 J = 1, NRHS
WORK( M+J+( I-1 )*LDWORK ) = X( I, J )
30 CONTINUE
40 CONTINUE
*
XNRM = SLANGE( 'M', NRHS, N, WORK( M+1 ), LDWORK, RWORK )
IF( XNRM.NE.ZERO )
$ CALL SLASCL( 'G', 0, 0, XNRM, ONE, NRHS, N, WORK( M+1 ),
$ LDWORK, INFO )
*
* Compute LQ factorization of work
*
CALL SGELQ2( LDWORK, N, WORK, LDWORK, WORK( LDWORK*N+1 ),
$ WORK( LDWORK*( N+1 )+1 ), INFO )
*
* Compute largest entry in lower triangle in
* work(m+1:m+nrhs,m+1:n)
*
ERR = ZERO
DO 60 J = M + 1, N
DO 50 I = J, LDWORK
ERR = MAX( ERR, ABS( WORK( I+( J-1 )*LDWORK ) ) )
50 CONTINUE
60 CONTINUE
*
END IF
*
SQRT14 = ERR / ( REAL( MAX( M, N, NRHS ) )*SLAMCH( 'Epsilon' ) )
*
RETURN
*
* End of SQRT14
*
END
|