1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035
|
*> \brief \b ZDRVGBX
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
* AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
* RWORK, IWORK, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER LA, LAFB, NN, NOUT, NRHS
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER IWORK( * ), NVAL( * )
* DOUBLE PRECISION RWORK( * ), S( * )
* COMPLEX*16 A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
* $ WORK( * ), X( * ), XACT( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZDRVGB tests the driver routines ZGBSV, -SVX, and -SVXX.
*>
*> Note that this file is used only when the XBLAS are available,
*> otherwise zdrvgb.f defines this subroutine.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix column dimension N.
*> \endverbatim
*>
*> \param[in] NRHS
*> \verbatim
*> NRHS is INTEGER
*> The number of right hand side vectors to be generated for
*> each linear system.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (LA)
*> \endverbatim
*>
*> \param[in] LA
*> \verbatim
*> LA is INTEGER
*> The length of the array A. LA >= (2*NMAX-1)*NMAX
*> where NMAX is the largest entry in NVAL.
*> \endverbatim
*>
*> \param[out] AFB
*> \verbatim
*> AFB is COMPLEX*16 array, dimension (LAFB)
*> \endverbatim
*>
*> \param[in] LAFB
*> \verbatim
*> LAFB is INTEGER
*> The length of the array AFB. LAFB >= (3*NMAX-2)*NMAX
*> where NMAX is the largest entry in NVAL.
*> \endverbatim
*>
*> \param[out] ASAV
*> \verbatim
*> ASAV is COMPLEX*16 array, dimension (LA)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] BSAV
*> \verbatim
*> BSAV is COMPLEX*16 array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is COMPLEX*16 array, dimension (NMAX*NRHS)
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension (2*NMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension
*> (NMAX*max(3,NRHS,NMAX))
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension
*> (max(NMAX,2*NRHS))
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZDRVGB( DOTYPE, NN, NVAL, NRHS, THRESH, TSTERR, A, LA,
$ AFB, LAFB, ASAV, B, BSAV, X, XACT, S, WORK,
$ RWORK, IWORK, NOUT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER LA, LAFB, NN, NOUT, NRHS
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER IWORK( * ), NVAL( * )
DOUBLE PRECISION RWORK( * ), S( * )
COMPLEX*16 A( * ), AFB( * ), ASAV( * ), B( * ), BSAV( * ),
$ WORK( * ), X( * ), XACT( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
INTEGER NTYPES
PARAMETER ( NTYPES = 8 )
INTEGER NTESTS
PARAMETER ( NTESTS = 7 )
INTEGER NTRAN
PARAMETER ( NTRAN = 3 )
* ..
* .. Local Scalars ..
LOGICAL EQUIL, NOFACT, PREFAC, TRFCON, ZEROT
CHARACTER DIST, EQUED, FACT, TRANS, TYPE, XTYPE
CHARACTER*3 PATH
INTEGER I, I1, I2, IEQUED, IFACT, IKL, IKU, IMAT, IN,
$ INFO, IOFF, ITRAN, IZERO, J, K, K1, KL, KU,
$ LDA, LDAFB, LDB, MODE, N, NB, NBMIN, NERRS,
$ NFACT, NFAIL, NIMAT, NKL, NKU, NRUN, NT,
$ N_ERR_BNDS
DOUBLE PRECISION AINVNM, AMAX, ANORM, ANORMI, ANORMO, ANRMPV,
$ CNDNUM, COLCND, RCOND, RCONDC, RCONDI, RCONDO,
$ ROLDC, ROLDI, ROLDO, ROWCND, RPVGRW,
$ RPVGRW_SVXX
* ..
* .. Local Arrays ..
CHARACTER EQUEDS( 4 ), FACTS( 3 ), TRANSS( NTRAN )
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RDUM( 1 ), RESULT( NTESTS ), BERR( NRHS ),
$ ERRBNDS_N( NRHS, 3 ), ERRBNDS_C( NRHS, 3 )
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DGET06, DLAMCH, ZLANGB, ZLANGE, ZLANTB,
$ ZLA_GBRPVGRW
EXTERNAL LSAME, DGET06, DLAMCH, ZLANGB, ZLANGE, ZLANTB,
$ ZLA_GBRPVGRW
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, XLAENV, ZERRVX, ZGBEQU,
$ ZGBSV, ZGBSVX, ZGBT01, ZGBT02, ZGBT05, ZGBTRF,
$ ZGBTRS, ZGET04, ZLACPY, ZLAQGB, ZLARHS, ZLASET,
$ ZLATB4, ZLATMS, ZGBSVXX
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DCMPLX, MAX, MIN
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, NUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, NUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA TRANSS / 'N', 'T', 'C' /
DATA FACTS / 'F', 'N', 'E' /
DATA EQUEDS / 'N', 'R', 'C', 'B' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'Zomplex precision'
PATH( 2: 3 ) = 'GB'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
* Test the error exits
*
IF( TSTERR )
$ CALL ZERRVX( PATH, NOUT )
INFOT = 0
*
* Set the block size and minimum block size for testing.
*
NB = 1
NBMIN = 2
CALL XLAENV( 1, NB )
CALL XLAENV( 2, NBMIN )
*
* Do for each value of N in NVAL
*
DO 150 IN = 1, NN
N = NVAL( IN )
LDB = MAX( N, 1 )
XTYPE = 'N'
*
* Set limits on the number of loop iterations.
*
NKL = MAX( 1, MIN( N, 4 ) )
IF( N.EQ.0 )
$ NKL = 1
NKU = NKL
NIMAT = NTYPES
IF( N.LE.0 )
$ NIMAT = 1
*
DO 140 IKL = 1, NKL
*
* Do for KL = 0, N-1, (3N-1)/4, and (N+1)/4. This order makes
* it easier to skip redundant values for small values of N.
*
IF( IKL.EQ.1 ) THEN
KL = 0
ELSE IF( IKL.EQ.2 ) THEN
KL = MAX( N-1, 0 )
ELSE IF( IKL.EQ.3 ) THEN
KL = ( 3*N-1 ) / 4
ELSE IF( IKL.EQ.4 ) THEN
KL = ( N+1 ) / 4
END IF
DO 130 IKU = 1, NKU
*
* Do for KU = 0, N-1, (3N-1)/4, and (N+1)/4. This order
* makes it easier to skip redundant values for small
* values of N.
*
IF( IKU.EQ.1 ) THEN
KU = 0
ELSE IF( IKU.EQ.2 ) THEN
KU = MAX( N-1, 0 )
ELSE IF( IKU.EQ.3 ) THEN
KU = ( 3*N-1 ) / 4
ELSE IF( IKU.EQ.4 ) THEN
KU = ( N+1 ) / 4
END IF
*
* Check that A and AFB are big enough to generate this
* matrix.
*
LDA = KL + KU + 1
LDAFB = 2*KL + KU + 1
IF( LDA*N.GT.LA .OR. LDAFB*N.GT.LAFB ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( LDA*N.GT.LA ) THEN
WRITE( NOUT, FMT = 9999 )LA, N, KL, KU,
$ N*( KL+KU+1 )
NERRS = NERRS + 1
END IF
IF( LDAFB*N.GT.LAFB ) THEN
WRITE( NOUT, FMT = 9998 )LAFB, N, KL, KU,
$ N*( 2*KL+KU+1 )
NERRS = NERRS + 1
END IF
GO TO 130
END IF
*
DO 120 IMAT = 1, NIMAT
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 120
*
* Skip types 2, 3, or 4 if the matrix is too small.
*
ZEROT = IMAT.GE.2 .AND. IMAT.LE.4
IF( ZEROT .AND. N.LT.IMAT-1 )
$ GO TO 120
*
* Set up parameters with ZLATB4 and generate a
* test matrix with ZLATMS.
*
CALL ZLATB4( PATH, IMAT, N, N, TYPE, KL, KU, ANORM,
$ MODE, CNDNUM, DIST )
RCONDC = ONE / CNDNUM
*
SRNAMT = 'ZLATMS'
CALL ZLATMS( N, N, DIST, ISEED, TYPE, RWORK, MODE,
$ CNDNUM, ANORM, KL, KU, 'Z', A, LDA, WORK,
$ INFO )
*
* Check the error code from ZLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( PATH, 'ZLATMS', INFO, 0, ' ', N, N,
$ KL, KU, -1, IMAT, NFAIL, NERRS, NOUT )
GO TO 120
END IF
*
* For types 2, 3, and 4, zero one or more columns of
* the matrix to test that INFO is returned correctly.
*
IZERO = 0
IF( ZEROT ) THEN
IF( IMAT.EQ.2 ) THEN
IZERO = 1
ELSE IF( IMAT.EQ.3 ) THEN
IZERO = N
ELSE
IZERO = N / 2 + 1
END IF
IOFF = ( IZERO-1 )*LDA
IF( IMAT.LT.4 ) THEN
I1 = MAX( 1, KU+2-IZERO )
I2 = MIN( KL+KU+1, KU+1+( N-IZERO ) )
DO 20 I = I1, I2
A( IOFF+I ) = ZERO
20 CONTINUE
ELSE
DO 40 J = IZERO, N
DO 30 I = MAX( 1, KU+2-J ),
$ MIN( KL+KU+1, KU+1+( N-J ) )
A( IOFF+I ) = ZERO
30 CONTINUE
IOFF = IOFF + LDA
40 CONTINUE
END IF
END IF
*
* Save a copy of the matrix A in ASAV.
*
CALL ZLACPY( 'Full', KL+KU+1, N, A, LDA, ASAV, LDA )
*
DO 110 IEQUED = 1, 4
EQUED = EQUEDS( IEQUED )
IF( IEQUED.EQ.1 ) THEN
NFACT = 3
ELSE
NFACT = 1
END IF
*
DO 100 IFACT = 1, NFACT
FACT = FACTS( IFACT )
PREFAC = LSAME( FACT, 'F' )
NOFACT = LSAME( FACT, 'N' )
EQUIL = LSAME( FACT, 'E' )
*
IF( ZEROT ) THEN
IF( PREFAC )
$ GO TO 100
RCONDO = ZERO
RCONDI = ZERO
*
ELSE IF( .NOT.NOFACT ) THEN
*
* Compute the condition number for comparison
* with the value returned by DGESVX (FACT =
* 'N' reuses the condition number from the
* previous iteration with FACT = 'F').
*
CALL ZLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
$ AFB( KL+1 ), LDAFB )
IF( EQUIL .OR. IEQUED.GT.1 ) THEN
*
* Compute row and column scale factors to
* equilibrate the matrix A.
*
CALL ZGBEQU( N, N, KL, KU, AFB( KL+1 ),
$ LDAFB, S, S( N+1 ), ROWCND,
$ COLCND, AMAX, INFO )
IF( INFO.EQ.0 .AND. N.GT.0 ) THEN
IF( LSAME( EQUED, 'R' ) ) THEN
ROWCND = ZERO
COLCND = ONE
ELSE IF( LSAME( EQUED, 'C' ) ) THEN
ROWCND = ONE
COLCND = ZERO
ELSE IF( LSAME( EQUED, 'B' ) ) THEN
ROWCND = ZERO
COLCND = ZERO
END IF
*
* Equilibrate the matrix.
*
CALL ZLAQGB( N, N, KL, KU, AFB( KL+1 ),
$ LDAFB, S, S( N+1 ),
$ ROWCND, COLCND, AMAX,
$ EQUED )
END IF
END IF
*
* Save the condition number of the
* non-equilibrated system for use in ZGET04.
*
IF( EQUIL ) THEN
ROLDO = RCONDO
ROLDI = RCONDI
END IF
*
* Compute the 1-norm and infinity-norm of A.
*
ANORMO = ZLANGB( '1', N, KL, KU, AFB( KL+1 ),
$ LDAFB, RWORK )
ANORMI = ZLANGB( 'I', N, KL, KU, AFB( KL+1 ),
$ LDAFB, RWORK )
*
* Factor the matrix A.
*
CALL ZGBTRF( N, N, KL, KU, AFB, LDAFB, IWORK,
$ INFO )
*
* Form the inverse of A.
*
CALL ZLASET( 'Full', N, N, DCMPLX( ZERO ),
$ DCMPLX( ONE ), WORK, LDB )
SRNAMT = 'ZGBTRS'
CALL ZGBTRS( 'No transpose', N, KL, KU, N,
$ AFB, LDAFB, IWORK, WORK, LDB,
$ INFO )
*
* Compute the 1-norm condition number of A.
*
AINVNM = ZLANGE( '1', N, N, WORK, LDB,
$ RWORK )
IF( ANORMO.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDO = ONE
ELSE
RCONDO = ( ONE / ANORMO ) / AINVNM
END IF
*
* Compute the infinity-norm condition number
* of A.
*
AINVNM = ZLANGE( 'I', N, N, WORK, LDB,
$ RWORK )
IF( ANORMI.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCONDI = ONE
ELSE
RCONDI = ( ONE / ANORMI ) / AINVNM
END IF
END IF
*
DO 90 ITRAN = 1, NTRAN
*
* Do for each value of TRANS.
*
TRANS = TRANSS( ITRAN )
IF( ITRAN.EQ.1 ) THEN
RCONDC = RCONDO
ELSE
RCONDC = RCONDI
END IF
*
* Restore the matrix A.
*
CALL ZLACPY( 'Full', KL+KU+1, N, ASAV, LDA,
$ A, LDA )
*
* Form an exact solution and set the right hand
* side.
*
SRNAMT = 'ZLARHS'
CALL ZLARHS( PATH, XTYPE, 'Full', TRANS, N,
$ N, KL, KU, NRHS, A, LDA, XACT,
$ LDB, B, LDB, ISEED, INFO )
XTYPE = 'C'
CALL ZLACPY( 'Full', N, NRHS, B, LDB, BSAV,
$ LDB )
*
IF( NOFACT .AND. ITRAN.EQ.1 ) THEN
*
* --- Test ZGBSV ---
*
* Compute the LU factorization of the matrix
* and solve the system.
*
CALL ZLACPY( 'Full', KL+KU+1, N, A, LDA,
$ AFB( KL+1 ), LDAFB )
CALL ZLACPY( 'Full', N, NRHS, B, LDB, X,
$ LDB )
*
SRNAMT = 'ZGBSV '
CALL ZGBSV( N, KL, KU, NRHS, AFB, LDAFB,
$ IWORK, X, LDB, INFO )
*
* Check error code from ZGBSV .
*
IF( INFO.NE.IZERO )
$ CALL ALAERH( PATH, 'ZGBSV ', INFO,
$ IZERO, ' ', N, N, KL, KU,
$ NRHS, IMAT, NFAIL, NERRS,
$ NOUT )
*
* Reconstruct matrix from factors and
* compute residual.
*
CALL ZGBT01( N, N, KL, KU, A, LDA, AFB,
$ LDAFB, IWORK, WORK,
$ RESULT( 1 ) )
NT = 1
IF( IZERO.EQ.0 ) THEN
*
* Compute residual of the computed
* solution.
*
CALL ZLACPY( 'Full', N, NRHS, B, LDB,
$ WORK, LDB )
CALL ZGBT02( 'No transpose', N, N, KL,
$ KU, NRHS, A, LDA, X, LDB,
$ WORK, LDB, RESULT( 2 ) )
*
* Check solution from generated exact
* solution.
*
CALL ZGET04( N, NRHS, X, LDB, XACT,
$ LDB, RCONDC, RESULT( 3 ) )
NT = 3
END IF
*
* Print information about the tests that did
* not pass the threshold.
*
DO 50 K = 1, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
WRITE( NOUT, FMT = 9997 )'ZGBSV ',
$ N, KL, KU, IMAT, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
50 CONTINUE
NRUN = NRUN + NT
END IF
*
* --- Test ZGBSVX ---
*
IF( .NOT.PREFAC )
$ CALL ZLASET( 'Full', 2*KL+KU+1, N,
$ DCMPLX( ZERO ),
$ DCMPLX( ZERO ), AFB, LDAFB )
CALL ZLASET( 'Full', N, NRHS, DCMPLX( ZERO ),
$ DCMPLX( ZERO ), X, LDB )
IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
*
* Equilibrate the matrix if FACT = 'F' and
* EQUED = 'R', 'C', or 'B'.
*
CALL ZLAQGB( N, N, KL, KU, A, LDA, S,
$ S( N+1 ), ROWCND, COLCND,
$ AMAX, EQUED )
END IF
*
* Solve the system and compute the condition
* number and error bounds using ZGBSVX.
*
SRNAMT = 'ZGBSVX'
CALL ZGBSVX( FACT, TRANS, N, KL, KU, NRHS, A,
$ LDA, AFB, LDAFB, IWORK, EQUED,
$ S, S( LDB+1 ), B, LDB, X, LDB,
$ RCOND, RWORK, RWORK( NRHS+1 ),
$ WORK, RWORK( 2*NRHS+1 ), INFO )
*
* Check the error code from ZGBSVX.
*
IF( INFO.NE.IZERO )
$ CALL ALAERH( PATH, 'ZGBSVX', INFO, IZERO,
$ FACT // TRANS, N, N, KL, KU,
$ NRHS, IMAT, NFAIL, NERRS,
$ NOUT )
*
* Compare RWORK(2*NRHS+1) from ZGBSVX with the
* computed reciprocal pivot growth RPVGRW
*
IF( INFO.NE.0 ) THEN
ANRMPV = ZERO
DO 70 J = 1, INFO
DO 60 I = MAX( KU+2-J, 1 ),
$ MIN( N+KU+1-J, KL+KU+1 )
ANRMPV = MAX( ANRMPV,
$ ABS( A( I+( J-1 )*LDA ) ) )
60 CONTINUE
70 CONTINUE
RPVGRW = ZLANTB( 'M', 'U', 'N', INFO,
$ MIN( INFO-1, KL+KU ),
$ AFB( MAX( 1, KL+KU+2-INFO ) ),
$ LDAFB, RDUM )
IF( RPVGRW.EQ.ZERO ) THEN
RPVGRW = ONE
ELSE
RPVGRW = ANRMPV / RPVGRW
END IF
ELSE
RPVGRW = ZLANTB( 'M', 'U', 'N', N, KL+KU,
$ AFB, LDAFB, RDUM )
IF( RPVGRW.EQ.ZERO ) THEN
RPVGRW = ONE
ELSE
RPVGRW = ZLANGB( 'M', N, KL, KU, A,
$ LDA, RDUM ) / RPVGRW
END IF
END IF
RESULT( 7 ) = ABS( RPVGRW-RWORK( 2*NRHS+1 ) )
$ / MAX( RWORK( 2*NRHS+1 ),
$ RPVGRW ) / DLAMCH( 'E' )
*
IF( .NOT.PREFAC ) THEN
*
* Reconstruct matrix from factors and
* compute residual.
*
CALL ZGBT01( N, N, KL, KU, A, LDA, AFB,
$ LDAFB, IWORK, WORK,
$ RESULT( 1 ) )
K1 = 1
ELSE
K1 = 2
END IF
*
IF( INFO.EQ.0 ) THEN
TRFCON = .FALSE.
*
* Compute residual of the computed solution.
*
CALL ZLACPY( 'Full', N, NRHS, BSAV, LDB,
$ WORK, LDB )
CALL ZGBT02( TRANS, N, N, KL, KU, NRHS,
$ ASAV, LDA, X, LDB, WORK, LDB,
$ RESULT( 2 ) )
*
* Check solution from generated exact
* solution.
*
IF( NOFACT .OR. ( PREFAC .AND.
$ LSAME( EQUED, 'N' ) ) ) THEN
CALL ZGET04( N, NRHS, X, LDB, XACT,
$ LDB, RCONDC, RESULT( 3 ) )
ELSE
IF( ITRAN.EQ.1 ) THEN
ROLDC = ROLDO
ELSE
ROLDC = ROLDI
END IF
CALL ZGET04( N, NRHS, X, LDB, XACT,
$ LDB, ROLDC, RESULT( 3 ) )
END IF
*
* Check the error bounds from iterative
* refinement.
*
CALL ZGBT05( TRANS, N, KL, KU, NRHS, ASAV,
$ LDA, BSAV, LDB, X, LDB, XACT,
$ LDB, RWORK, RWORK( NRHS+1 ),
$ RESULT( 4 ) )
ELSE
TRFCON = .TRUE.
END IF
*
* Compare RCOND from ZGBSVX with the computed
* value in RCONDC.
*
RESULT( 6 ) = DGET06( RCOND, RCONDC )
*
* Print information about the tests that did
* not pass the threshold.
*
IF( .NOT.TRFCON ) THEN
DO 80 K = K1, NTESTS
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )
$ 'ZGBSVX', FACT, TRANS, N, KL,
$ KU, EQUED, IMAT, K,
$ RESULT( K )
ELSE
WRITE( NOUT, FMT = 9996 )
$ 'ZGBSVX', FACT, TRANS, N, KL,
$ KU, IMAT, K, RESULT( K )
END IF
NFAIL = NFAIL + 1
END IF
80 CONTINUE
NRUN = NRUN + 7 - K1
ELSE
IF( RESULT( 1 ).GE.THRESH .AND. .NOT.
$ PREFAC ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'ZGBSVX',
$ FACT, TRANS, N, KL, KU, EQUED,
$ IMAT, 1, RESULT( 1 )
ELSE
WRITE( NOUT, FMT = 9996 )'ZGBSVX',
$ FACT, TRANS, N, KL, KU, IMAT, 1,
$ RESULT( 1 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
IF( RESULT( 6 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'ZGBSVX',
$ FACT, TRANS, N, KL, KU, EQUED,
$ IMAT, 6, RESULT( 6 )
ELSE
WRITE( NOUT, FMT = 9996 )'ZGBSVX',
$ FACT, TRANS, N, KL, KU, IMAT, 6,
$ RESULT( 6 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
IF( RESULT( 7 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'ZGBSVX',
$ FACT, TRANS, N, KL, KU, EQUED,
$ IMAT, 7, RESULT( 7 )
ELSE
WRITE( NOUT, FMT = 9996 )'ZGBSVX',
$ FACT, TRANS, N, KL, KU, IMAT, 7,
$ RESULT( 7 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
END IF
* --- Test ZGBSVXX ---
* Restore the matrices A and B.
c write(*,*) 'begin zgbsvxx testing'
CALL ZLACPY( 'Full', KL+KU+1, N, ASAV, LDA, A,
$ LDA )
CALL ZLACPY( 'Full', N, NRHS, BSAV, LDB, B, LDB )
IF( .NOT.PREFAC )
$ CALL ZLASET( 'Full', 2*KL+KU+1, N,
$ DCMPLX( ZERO ), DCMPLX( ZERO ),
$ AFB, LDAFB )
CALL ZLASET( 'Full', N, NRHS,
$ DCMPLX( ZERO ), DCMPLX( ZERO ),
$ X, LDB )
IF( IEQUED.GT.1 .AND. N.GT.0 ) THEN
*
* Equilibrate the matrix if FACT = 'F' and
* EQUED = 'R', 'C', or 'B'.
*
CALL ZLAQGB( N, N, KL, KU, A, LDA, S,
$ S( N+1 ), ROWCND, COLCND, AMAX, EQUED )
END IF
*
* Solve the system and compute the condition number
* and error bounds using ZGBSVXX.
*
SRNAMT = 'ZGBSVXX'
N_ERR_BNDS = 3
CALL ZGBSVXX( FACT, TRANS, N, KL, KU, NRHS, A, LDA,
$ AFB, LDAFB, IWORK, EQUED, S, S( N+1 ), B, LDB,
$ X, LDB, RCOND, RPVGRW_SVXX, BERR, N_ERR_BNDS,
$ ERRBNDS_N, ERRBNDS_C, 0, ZERO, WORK,
$ RWORK, INFO )
*
* Check the error code from ZGBSVXX.
*
IF( INFO.EQ.N+1 ) GOTO 90
IF( INFO.NE.IZERO ) THEN
CALL ALAERH( PATH, 'ZGBSVXX', INFO, IZERO,
$ FACT // TRANS, N, N, -1, -1, NRHS,
$ IMAT, NFAIL, NERRS, NOUT )
GOTO 90
END IF
*
* Compare rpvgrw_svxx from ZGESVXX with the computed
* reciprocal pivot growth factor RPVGRW
*
IF ( INFO .GT. 0 .AND. INFO .LT. N+1 ) THEN
RPVGRW = ZLA_GBRPVGRW(N, KL, KU, INFO, A, LDA,
$ AFB, LDAFB)
ELSE
RPVGRW = ZLA_GBRPVGRW(N, KL, KU, N, A, LDA,
$ AFB, LDAFB)
ENDIF
RESULT( 7 ) = ABS( RPVGRW-rpvgrw_svxx ) /
$ MAX( rpvgrw_svxx, RPVGRW ) /
$ DLAMCH( 'E' )
*
IF( .NOT.PREFAC ) THEN
*
* Reconstruct matrix from factors and compute
* residual.
*
CALL ZGBT01( N, N, KL, KU, A, LDA, AFB, LDAFB,
$ IWORK, WORK( 2*NRHS+1 ), RESULT( 1 ) )
K1 = 1
ELSE
K1 = 2
END IF
*
IF( INFO.EQ.0 ) THEN
TRFCON = .FALSE.
*
* Compute residual of the computed solution.
*
CALL ZLACPY( 'Full', N, NRHS, BSAV, LDB, WORK,
$ LDB )
CALL ZGBT02( TRANS, N, N, KL, KU, NRHS, ASAV,
$ LDA, X, LDB, WORK, LDB, RESULT( 2 ) )
*
* Check solution from generated exact solution.
*
IF( NOFACT .OR. ( PREFAC .AND. LSAME( EQUED,
$ 'N' ) ) ) THEN
CALL ZGET04( N, NRHS, X, LDB, XACT, LDB,
$ RCONDC, RESULT( 3 ) )
ELSE
IF( ITRAN.EQ.1 ) THEN
ROLDC = ROLDO
ELSE
ROLDC = ROLDI
END IF
CALL ZGET04( N, NRHS, X, LDB, XACT, LDB,
$ ROLDC, RESULT( 3 ) )
END IF
ELSE
TRFCON = .TRUE.
END IF
*
* Compare RCOND from ZGBSVXX with the computed value
* in RCONDC.
*
RESULT( 6 ) = DGET06( RCOND, RCONDC )
*
* Print information about the tests that did not pass
* the threshold.
*
IF( .NOT.TRFCON ) THEN
DO 45 K = K1, NTESTS
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'ZGBSVXX',
$ FACT, TRANS, N, KL, KU, EQUED,
$ IMAT, K, RESULT( K )
ELSE
WRITE( NOUT, FMT = 9996 )'ZGBSVXX',
$ FACT, TRANS, N, KL, KU, IMAT, K,
$ RESULT( K )
END IF
NFAIL = NFAIL + 1
END IF
45 CONTINUE
NRUN = NRUN + 7 - K1
ELSE
IF( RESULT( 1 ).GE.THRESH .AND. .NOT.PREFAC )
$ THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'ZGBSVXX', FACT,
$ TRANS, N, KL, KU, EQUED, IMAT, 1,
$ RESULT( 1 )
ELSE
WRITE( NOUT, FMT = 9996 )'ZGBSVXX', FACT,
$ TRANS, N, KL, KU, IMAT, 1,
$ RESULT( 1 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
IF( RESULT( 6 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'ZGBSVXX', FACT,
$ TRANS, N, KL, KU, EQUED, IMAT, 6,
$ RESULT( 6 )
ELSE
WRITE( NOUT, FMT = 9996 )'ZGBSVXX', FACT,
$ TRANS, N, KL, KU, IMAT, 6,
$ RESULT( 6 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
IF( RESULT( 7 ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALADHD( NOUT, PATH )
IF( PREFAC ) THEN
WRITE( NOUT, FMT = 9995 )'ZGBSVXX', FACT,
$ TRANS, N, KL, KU, EQUED, IMAT, 7,
$ RESULT( 7 )
ELSE
WRITE( NOUT, FMT = 9996 )'ZGBSVXX', FACT,
$ TRANS, N, KL, KU, IMAT, 7,
$ RESULT( 7 )
END IF
NFAIL = NFAIL + 1
NRUN = NRUN + 1
END IF
*
END IF
*
90 CONTINUE
100 CONTINUE
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
150 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
* Test Error Bounds from ZGBSVXX
CALL ZEBCHVXX(THRESH, PATH)
9999 FORMAT( ' *** In ZDRVGB, LA=', I5, ' is too small for N=', I5,
$ ', KU=', I5, ', KL=', I5, / ' ==> Increase LA to at least ',
$ I5 )
9998 FORMAT( ' *** In ZDRVGB, LAFB=', I5, ' is too small for N=', I5,
$ ', KU=', I5, ', KL=', I5, /
$ ' ==> Increase LAFB to at least ', I5 )
9997 FORMAT( 1X, A, ', N=', I5, ', KL=', I5, ', KU=', I5, ', type ',
$ I1, ', test(', I1, ')=', G12.5 )
9996 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
$ I5, ',...), type ', I1, ', test(', I1, ')=', G12.5 )
9995 FORMAT( 1X, A, '( ''', A1, ''',''', A1, ''',', I5, ',', I5, ',',
$ I5, ',...), EQUED=''', A1, ''', type ', I1, ', test(', I1,
$ ')=', G12.5 )
*
RETURN
*
* End of ZDRVGB
*
END
|