1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739
|
*> \brief \b ZDRVLS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
* NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
* COPYB, C, S, COPYS, WORK, RWORK, IWORK, NOUT )
*
* .. Scalar Arguments ..
* LOGICAL TSTERR
* INTEGER NM, NN, NNB, NNS, NOUT
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* LOGICAL DOTYPE( * )
* INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
* $ NVAL( * ), NXVAL( * )
* DOUBLE PRECISION COPYS( * ), RWORK( * ), S( * )
* COMPLEX*16 A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
* $ WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZDRVLS tests the least squares driver routines ZGELS, CGELSX, CGELSS,
*> ZGELSY and CGELSD.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] DOTYPE
*> \verbatim
*> DOTYPE is LOGICAL array, dimension (NTYPES)
*> The matrix types to be used for testing. Matrices of type j
*> (for 1 <= j <= NTYPES) are used for testing if DOTYPE(j) =
*> .TRUE.; if DOTYPE(j) = .FALSE., then type j is not used.
*> The matrix of type j is generated as follows:
*> j=1: A = U*D*V where U and V are random unitary matrices
*> and D has random entries (> 0.1) taken from a uniform
*> distribution (0,1). A is full rank.
*> j=2: The same of 1, but A is scaled up.
*> j=3: The same of 1, but A is scaled down.
*> j=4: A = U*D*V where U and V are random unitary matrices
*> and D has 3*min(M,N)/4 random entries (> 0.1) taken
*> from a uniform distribution (0,1) and the remaining
*> entries set to 0. A is rank-deficient.
*> j=5: The same of 4, but A is scaled up.
*> j=6: The same of 5, but A is scaled down.
*> \endverbatim
*>
*> \param[in] NM
*> \verbatim
*> NM is INTEGER
*> The number of values of M contained in the vector MVAL.
*> \endverbatim
*>
*> \param[in] MVAL
*> \verbatim
*> MVAL is INTEGER array, dimension (NM)
*> The values of the matrix row dimension M.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix column dimension N.
*> \endverbatim
*>
*> \param[in] NNB
*> \verbatim
*> NNB is INTEGER
*> The number of values of NB and NX contained in the
*> vectors NBVAL and NXVAL. The blocking parameters are used
*> in pairs (NB,NX).
*> \endverbatim
*>
*> \param[in] NBVAL
*> \verbatim
*> NBVAL is INTEGER array, dimension (NNB)
*> The values of the blocksize NB.
*> \endverbatim
*>
*> \param[in] NXVAL
*> \verbatim
*> NXVAL is INTEGER array, dimension (NNB)
*> The values of the crossover point NX.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*> NNS is INTEGER
*> The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*> NSVAL is INTEGER array, dimension (NNS)
*> The values of the number of right hand sides NRHS.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] TSTERR
*> \verbatim
*> TSTERR is LOGICAL
*> Flag that indicates whether error exits are to be tested.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (MMAX*NMAX)
*> where MMAX is the maximum value of M in MVAL and NMAX is the
*> maximum value of N in NVAL.
*> \endverbatim
*>
*> \param[out] COPYA
*> \verbatim
*> COPYA is COMPLEX*16 array, dimension (MMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (MMAX*NSMAX)
*> where MMAX is the maximum value of M in MVAL and NSMAX is the
*> maximum value of NRHS in NSVAL.
*> \endverbatim
*>
*> \param[out] COPYB
*> \verbatim
*> COPYB is COMPLEX*16 array, dimension (MMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] C
*> \verbatim
*> C is COMPLEX*16 array, dimension (MMAX*NSMAX)
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension
*> (min(MMAX,NMAX))
*> \endverbatim
*>
*> \param[out] COPYS
*> \verbatim
*> COPYS is DOUBLE PRECISION array, dimension
*> (min(MMAX,NMAX))
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension
*> (MMAX*NMAX + 4*NMAX + MMAX).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (5*NMAX-1)
*> \endverbatim
*>
*> \param[out] IWORK
*> \verbatim
*> IWORK is INTEGER array, dimension (15*NMAX)
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZDRVLS( DOTYPE, NM, MVAL, NN, NVAL, NNS, NSVAL, NNB,
$ NBVAL, NXVAL, THRESH, TSTERR, A, COPYA, B,
$ COPYB, C, S, COPYS, WORK, RWORK, IWORK, NOUT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
LOGICAL TSTERR
INTEGER NM, NN, NNB, NNS, NOUT
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
LOGICAL DOTYPE( * )
INTEGER IWORK( * ), MVAL( * ), NBVAL( * ), NSVAL( * ),
$ NVAL( * ), NXVAL( * )
DOUBLE PRECISION COPYS( * ), RWORK( * ), S( * )
COMPLEX*16 A( * ), B( * ), C( * ), COPYA( * ), COPYB( * ),
$ WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NTESTS
PARAMETER ( NTESTS = 18 )
INTEGER SMLSIZ
PARAMETER ( SMLSIZ = 25 )
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
COMPLEX*16 CONE, CZERO
PARAMETER ( CONE = ( 1.0D+0, 0.0D+0 ),
$ CZERO = ( 0.0D+0, 0.0D+0 ) )
* ..
* .. Local Scalars ..
CHARACTER TRANS
CHARACTER*3 PATH
INTEGER CRANK, I, IM, IN, INB, INFO, INS, IRANK,
$ ISCALE, ITRAN, ITYPE, J, K, LDA, LDB, LDWORK,
$ LWLSY, LWORK, M, MNMIN, N, NB, NCOLS, NERRS,
$ NFAIL, NRHS, NROWS, NRUN, RANK
DOUBLE PRECISION EPS, NORMA, NORMB, RCOND
* ..
* .. Local Arrays ..
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. External Functions ..
DOUBLE PRECISION DASUM, DLAMCH, ZQRT12, ZQRT14, ZQRT17
EXTERNAL DASUM, DLAMCH, ZQRT12, ZQRT14, ZQRT17
* ..
* .. External Subroutines ..
EXTERNAL ALAERH, ALAHD, ALASVM, DAXPY, DLASRT, XLAENV,
$ ZDSCAL, ZERRLS, ZGELS, ZGELSD, ZGELSS, ZGELSX,
$ ZGELSY, ZGEMM, ZLACPY, ZLARNV, ZQRT13, ZQRT15,
$ ZQRT16
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN, SQRT
* ..
* .. Scalars in Common ..
LOGICAL LERR, OK
CHARACTER*32 SRNAMT
INTEGER INFOT, IOUNIT
* ..
* .. Common blocks ..
COMMON / INFOC / INFOT, IOUNIT, OK, LERR
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
PATH( 1: 1 ) = 'Zomplex precision'
PATH( 2: 3 ) = 'LS'
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
EPS = DLAMCH( 'Epsilon' )
*
* Threshold for rank estimation
*
RCOND = SQRT( EPS ) - ( SQRT( EPS )-EPS ) / 2
*
* Test the error exits
*
CALL XLAENV( 9, SMLSIZ )
IF( TSTERR )
$ CALL ZERRLS( PATH, NOUT )
*
* Print the header if NM = 0 or NN = 0 and THRESH = 0.
*
IF( ( NM.EQ.0 .OR. NN.EQ.0 ) .AND. THRESH.EQ.ZERO )
$ CALL ALAHD( NOUT, PATH )
INFOT = 0
*
DO 140 IM = 1, NM
M = MVAL( IM )
LDA = MAX( 1, M )
*
DO 130 IN = 1, NN
N = NVAL( IN )
MNMIN = MIN( M, N )
LDB = MAX( 1, M, N )
*
DO 120 INS = 1, NNS
NRHS = NSVAL( INS )
LWORK = MAX( 1, ( M+NRHS )*( N+2 ), ( N+NRHS )*( M+2 ),
$ M*N+4*MNMIN+MAX( M, N ), 2*N+M )
*
DO 110 IRANK = 1, 2
DO 100 ISCALE = 1, 3
ITYPE = ( IRANK-1 )*3 + ISCALE
IF( .NOT.DOTYPE( ITYPE ) )
$ GO TO 100
*
IF( IRANK.EQ.1 ) THEN
*
* Test ZGELS
*
* Generate a matrix of scaling type ISCALE
*
CALL ZQRT13( ISCALE, M, N, COPYA, LDA, NORMA,
$ ISEED )
DO 40 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
DO 30 ITRAN = 1, 2
IF( ITRAN.EQ.1 ) THEN
TRANS = 'N'
NROWS = M
NCOLS = N
ELSE
TRANS = 'C'
NROWS = N
NCOLS = M
END IF
LDWORK = MAX( 1, NCOLS )
*
* Set up a consistent rhs
*
IF( NCOLS.GT.0 ) THEN
CALL ZLARNV( 2, ISEED, NCOLS*NRHS,
$ WORK )
CALL ZDSCAL( NCOLS*NRHS,
$ ONE / DBLE( NCOLS ), WORK,
$ 1 )
END IF
CALL ZGEMM( TRANS, 'No transpose', NROWS,
$ NRHS, NCOLS, CONE, COPYA, LDA,
$ WORK, LDWORK, CZERO, B, LDB )
CALL ZLACPY( 'Full', NROWS, NRHS, B, LDB,
$ COPYB, LDB )
*
* Solve LS or overdetermined system
*
IF( M.GT.0 .AND. N.GT.0 ) THEN
CALL ZLACPY( 'Full', M, N, COPYA, LDA,
$ A, LDA )
CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, B, LDB )
END IF
SRNAMT = 'ZGELS '
CALL ZGELS( TRANS, M, N, NRHS, A, LDA, B,
$ LDB, WORK, LWORK, INFO )
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELS ', INFO, 0,
$ TRANS, M, N, NRHS, -1, NB,
$ ITYPE, NFAIL, NERRS,
$ NOUT )
*
* Check correctness of results
*
LDWORK = MAX( 1, NROWS )
IF( NROWS.GT.0 .AND. NRHS.GT.0 )
$ CALL ZLACPY( 'Full', NROWS, NRHS,
$ COPYB, LDB, C, LDB )
CALL ZQRT16( TRANS, M, N, NRHS, COPYA,
$ LDA, B, LDB, C, LDB, RWORK,
$ RESULT( 1 ) )
*
IF( ( ITRAN.EQ.1 .AND. M.GE.N ) .OR.
$ ( ITRAN.EQ.2 .AND. M.LT.N ) ) THEN
*
* Solving LS system
*
RESULT( 2 ) = ZQRT17( TRANS, 1, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK,
$ LWORK )
ELSE
*
* Solving overdetermined system
*
RESULT( 2 ) = ZQRT14( TRANS, M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
END IF
*
* Print information about the tests that
* did not pass the threshold.
*
DO 20 K = 1, 2
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9999 )TRANS, M,
$ N, NRHS, NB, ITYPE, K,
$ RESULT( K )
NFAIL = NFAIL + 1
END IF
20 CONTINUE
NRUN = NRUN + 2
30 CONTINUE
40 CONTINUE
END IF
*
* Generate a matrix of scaling type ISCALE and rank
* type IRANK.
*
CALL ZQRT15( ISCALE, IRANK, M, N, NRHS, COPYA, LDA,
$ COPYB, LDB, COPYS, RANK, NORMA, NORMB,
$ ISEED, WORK, LWORK )
*
* workspace used: MAX(M+MIN(M,N),NRHS*MIN(M,N),2*N+M)
*
DO 50 J = 1, N
IWORK( J ) = 0
50 CONTINUE
LDWORK = MAX( 1, M )
*
* Test ZGELSX
*
* ZGELSX: Compute the minimum-norm solution X
* to min( norm( A * X - B ) )
* using a complete orthogonal factorization.
*
CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B, LDB )
*
SRNAMT = 'ZGELSX'
CALL ZGELSX( M, N, NRHS, A, LDA, B, LDB, IWORK,
$ RCOND, CRANK, WORK, RWORK, INFO )
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELSX', INFO, 0, ' ', M, N,
$ NRHS, -1, NB, ITYPE, NFAIL, NERRS,
$ NOUT )
*
* workspace used: MAX( MNMIN+3*N, 2*MNMIN+NRHS )
*
* Test 3: Compute relative error in svd
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
*
RESULT( 3 ) = ZQRT12( CRANK, CRANK, A, LDA, COPYS,
$ WORK, LWORK, RWORK )
*
* Test 4: Compute error in solution
* workspace: M*NRHS + M
*
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
$ RESULT( 4 ) )
*
* Test 5: Check norm of r'*A
* workspace: NRHS*(M+N)
*
RESULT( 5 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 5 ) = ZQRT17( 'No transpose', 1, M, N,
$ NRHS, COPYA, LDA, B, LDB, COPYB,
$ LDB, C, WORK, LWORK )
*
* Test 6: Check if x is in the rowspace of A
* workspace: (M+NRHS)*(N+2)
*
RESULT( 6 ) = ZERO
*
IF( N.GT.CRANK )
$ RESULT( 6 ) = ZQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB, WORK,
$ LWORK )
*
* Print information about the tests that did not
* pass the threshold.
*
DO 60 K = 3, 6
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9998 )M, N, NRHS, 0,
$ ITYPE, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
60 CONTINUE
NRUN = NRUN + 4
*
* Loop for testing different block sizes.
*
DO 90 INB = 1, NNB
NB = NBVAL( INB )
CALL XLAENV( 1, NB )
CALL XLAENV( 3, NXVAL( INB ) )
*
* Test ZGELSY
*
* ZGELSY: Compute the minimum-norm solution
* X to min( norm( A * X - B ) )
* using the rank-revealing orthogonal
* factorization.
*
CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
* Initialize vector IWORK.
*
DO 70 J = 1, N
IWORK( J ) = 0
70 CONTINUE
*
* Set LWLSY to the adequate value.
*
LWLSY = MNMIN + MAX( 2*MNMIN, NB*( N+1 ),
$ MNMIN+NB*NRHS )
LWLSY = MAX( 1, LWLSY )
*
SRNAMT = 'ZGELSY'
CALL ZGELSY( M, N, NRHS, A, LDA, B, LDB, IWORK,
$ RCOND, CRANK, WORK, LWLSY, RWORK,
$ INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELSY', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* workspace used: 2*MNMIN+NB*NB+NB*MAX(N,NRHS)
*
* Test 7: Compute relative error in svd
* workspace: M*N + 4*MIN(M,N) + MAX(M,N)
*
RESULT( 7 ) = ZQRT12( CRANK, CRANK, A, LDA,
$ COPYS, WORK, LWORK, RWORK )
*
* Test 8: Compute error in solution
* workspace: M*NRHS + M
*
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
$ RESULT( 8 ) )
*
* Test 9: Check norm of r'*A
* workspace: NRHS*(M+N)
*
RESULT( 9 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 9 ) = ZQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 10: Check if x is in the rowspace of A
* workspace: (M+NRHS)*(N+2)
*
RESULT( 10 ) = ZERO
*
IF( N.GT.CRANK )
$ RESULT( 10 ) = ZQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test ZGELSS
*
* ZGELSS: Compute the minimum-norm solution
* X to min( norm( A * X - B ) )
* using the SVD.
*
CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
SRNAMT = 'ZGELSS'
CALL ZGELSS( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, RWORK,
$ INFO )
*
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELSS', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* workspace used: 3*min(m,n) +
* max(2*min(m,n),nrhs,max(m,n))
*
* Test 11: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 11 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
RESULT( 11 ) = ZERO
END IF
*
* Test 12: Compute error in solution
*
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
$ RESULT( 12 ) )
*
* Test 13: Check norm of r'*A
*
RESULT( 13 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 13 ) = ZQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 14: Check if x is in the rowspace of A
*
RESULT( 14 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 14 ) = ZQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Test ZGELSD
*
* ZGELSD: Compute the minimum-norm solution X
* to min( norm( A * X - B ) ) using a
* divide and conquer SVD.
*
CALL XLAENV( 9, 25 )
*
CALL ZLACPY( 'Full', M, N, COPYA, LDA, A, LDA )
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, B,
$ LDB )
*
SRNAMT = 'ZGELSD'
CALL ZGELSD( M, N, NRHS, A, LDA, B, LDB, S,
$ RCOND, CRANK, WORK, LWORK, RWORK,
$ IWORK, INFO )
IF( INFO.NE.0 )
$ CALL ALAERH( PATH, 'ZGELSD', INFO, 0, ' ', M,
$ N, NRHS, -1, NB, ITYPE, NFAIL,
$ NERRS, NOUT )
*
* Test 15: Compute relative error in svd
*
IF( RANK.GT.0 ) THEN
CALL DAXPY( MNMIN, -ONE, COPYS, 1, S, 1 )
RESULT( 15 ) = DASUM( MNMIN, S, 1 ) /
$ DASUM( MNMIN, COPYS, 1 ) /
$ ( EPS*DBLE( MNMIN ) )
ELSE
RESULT( 15 ) = ZERO
END IF
*
* Test 16: Compute error in solution
*
CALL ZLACPY( 'Full', M, NRHS, COPYB, LDB, WORK,
$ LDWORK )
CALL ZQRT16( 'No transpose', M, N, NRHS, COPYA,
$ LDA, B, LDB, WORK, LDWORK, RWORK,
$ RESULT( 16 ) )
*
* Test 17: Check norm of r'*A
*
RESULT( 17 ) = ZERO
IF( M.GT.CRANK )
$ RESULT( 17 ) = ZQRT17( 'No transpose', 1, M,
$ N, NRHS, COPYA, LDA, B, LDB,
$ COPYB, LDB, C, WORK, LWORK )
*
* Test 18: Check if x is in the rowspace of A
*
RESULT( 18 ) = ZERO
IF( N.GT.CRANK )
$ RESULT( 18 ) = ZQRT14( 'No transpose', M, N,
$ NRHS, COPYA, LDA, B, LDB,
$ WORK, LWORK )
*
* Print information about the tests that did not
* pass the threshold.
*
DO 80 K = 7, NTESTS
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
$ CALL ALAHD( NOUT, PATH )
WRITE( NOUT, FMT = 9998 )M, N, NRHS, NB,
$ ITYPE, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
80 CONTINUE
NRUN = NRUN + 12
*
90 CONTINUE
100 CONTINUE
110 CONTINUE
120 CONTINUE
130 CONTINUE
140 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( PATH, NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( ' TRANS=''', A1, ''', M=', I5, ', N=', I5, ', NRHS=', I4,
$ ', NB=', I4, ', type', I2, ', test(', I2, ')=', G12.5 )
9998 FORMAT( ' M=', I5, ', N=', I5, ', NRHS=', I4, ', NB=', I4,
$ ', type', I2, ', test(', I2, ')=', G12.5 )
RETURN
*
* End of ZDRVLS
*
END
|