1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591
|
*> \brief \b ZDRVRFP
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZDRVRFP( NOUT, NN, NVAL, NNS, NSVAL, NNT, NTVAL,
* + THRESH, A, ASAV, AFAC, AINV, B,
* + BSAV, XACT, X, ARF, ARFINV,
* + Z_WORK_ZLATMS, Z_WORK_ZPOT02,
* + Z_WORK_ZPOT03, D_WORK_ZLATMS, D_WORK_ZLANHE,
* + D_WORK_ZPOT01, D_WORK_ZPOT02, D_WORK_ZPOT03 )
*
* .. Scalar Arguments ..
* INTEGER NN, NNS, NNT, NOUT
* DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
* INTEGER NVAL( NN ), NSVAL( NNS ), NTVAL( NNT )
* COMPLEX*16 A( * )
* COMPLEX*16 AINV( * )
* COMPLEX*16 ASAV( * )
* COMPLEX*16 B( * )
* COMPLEX*16 BSAV( * )
* COMPLEX*16 AFAC( * )
* COMPLEX*16 ARF( * )
* COMPLEX*16 ARFINV( * )
* COMPLEX*16 XACT( * )
* COMPLEX*16 X( * )
* COMPLEX*16 Z_WORK_ZLATMS( * )
* COMPLEX*16 Z_WORK_ZPOT02( * )
* COMPLEX*16 Z_WORK_ZPOT03( * )
* DOUBLE PRECISION D_WORK_ZLATMS( * )
* DOUBLE PRECISION D_WORK_ZLANHE( * )
* DOUBLE PRECISION D_WORK_ZPOT01( * )
* DOUBLE PRECISION D_WORK_ZPOT02( * )
* DOUBLE PRECISION D_WORK_ZPOT03( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZDRVRFP tests the LAPACK RFP routines:
*> ZPFTRF, ZPFTRS, and ZPFTRI.
*>
*> This testing routine follow the same tests as ZDRVPO (test for the full
*> format Symmetric Positive Definite solver).
*>
*> The tests are performed in Full Format, convertion back and forth from
*> full format to RFP format are performed using the routines ZTRTTF and
*> ZTFTTR.
*>
*> First, a specific matrix A of size N is created. There is nine types of
*> different matrixes possible.
*> 1. Diagonal 6. Random, CNDNUM = sqrt(0.1/EPS)
*> 2. Random, CNDNUM = 2 7. Random, CNDNUM = 0.1/EPS
*> *3. First row and column zero 8. Scaled near underflow
*> *4. Last row and column zero 9. Scaled near overflow
*> *5. Middle row and column zero
*> (* - tests error exits from ZPFTRF, no test ratios are computed)
*> A solution XACT of size N-by-NRHS is created and the associated right
*> hand side B as well. Then ZPFTRF is called to compute L (or U), the
*> Cholesky factor of A. Then L (or U) is used to solve the linear system
*> of equations AX = B. This gives X. Then L (or U) is used to compute the
*> inverse of A, AINV. The following four tests are then performed:
*> (1) norm( L*L' - A ) / ( N * norm(A) * EPS ) or
*> norm( U'*U - A ) / ( N * norm(A) * EPS ),
*> (2) norm(B - A*X) / ( norm(A) * norm(X) * EPS ),
*> (3) norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
*> (4) ( norm(X-XACT) * RCOND ) / ( norm(XACT) * EPS ),
*> where EPS is the machine precision, RCOND the condition number of A, and
*> norm( . ) the 1-norm for (1,2,3) and the inf-norm for (4).
*> Errors occur when INFO parameter is not as expected. Failures occur when
*> a test ratios is greater than THRES.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*>
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N contained in the vector NVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix dimension N.
*> \endverbatim
*>
*> \param[in] NNS
*> \verbatim
*> NNS is INTEGER
*> The number of values of NRHS contained in the vector NSVAL.
*> \endverbatim
*>
*> \param[in] NSVAL
*> \verbatim
*> NSVAL is INTEGER array, dimension (NNS)
*> The values of the number of right-hand sides NRHS.
*> \endverbatim
*>
*> \param[in] NNT
*> \verbatim
*> NNT is INTEGER
*> The number of values of MATRIX TYPE contained in the vector NTVAL.
*> \endverbatim
*>
*> \param[in] NTVAL
*> \verbatim
*> NTVAL is INTEGER array, dimension (NNT)
*> The values of matrix type (between 0 and 9 for PO/PP/PF matrices).
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is DOUBLE PRECISION
*> The threshold value for the test ratios. A result is
*> included in the output file if RESULT >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] ASAV
*> \verbatim
*> ASAV is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AFAC
*> \verbatim
*> AFAC is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AINV
*> \verbatim
*> AINV is COMPLEX*16 array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX*16 array, dimension (NMAX*MAXRHS)
*> \endverbatim
*>
*> \param[out] BSAV
*> \verbatim
*> BSAV is COMPLEX*16 array, dimension (NMAX*MAXRHS)
*> \endverbatim
*>
*> \param[out] XACT
*> \verbatim
*> XACT is COMPLEX*16 array, dimension (NMAX*MAXRHS)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX*16 array, dimension (NMAX*MAXRHS)
*> \endverbatim
*>
*> \param[out] ARF
*> \verbatim
*> ARF is COMPLEX*16 array, dimension ((NMAX*(NMAX+1))/2)
*> \endverbatim
*>
*> \param[out] ARFINV
*> \verbatim
*> ARFINV is COMPLEX*16 array, dimension ((NMAX*(NMAX+1))/2)
*> \endverbatim
*>
*> \param[out] Z_WORK_ZLATMS
*> \verbatim
*> Z_WORK_ZLATMS is COMPLEX*16 array, dimension ( 3*NMAX )
*> \endverbatim
*>
*> \param[out] Z_WORK_ZPOT02
*> \verbatim
*> Z_WORK_ZPOT02 is COMPLEX*16 array, dimension ( NMAX*MAXRHS )
*> \endverbatim
*>
*> \param[out] Z_WORK_ZPOT03
*> \verbatim
*> Z_WORK_ZPOT03 is COMPLEX*16 array, dimension ( NMAX*NMAX )
*> \endverbatim
*>
*> \param[out] D_WORK_ZLATMS
*> \verbatim
*> D_WORK_ZLATMS is DOUBLE PRECISION array, dimension ( NMAX )
*> \endverbatim
*>
*> \param[out] D_WORK_ZLANHE
*> \verbatim
*> D_WORK_ZLANHE is DOUBLE PRECISION array, dimension ( NMAX )
*> \endverbatim
*>
*> \param[out] D_WORK_ZPOT01
*> \verbatim
*> D_WORK_ZPOT01 is DOUBLE PRECISION array, dimension ( NMAX )
*> \endverbatim
*>
*> \param[out] D_WORK_ZPOT02
*> \verbatim
*> D_WORK_ZPOT02 is DOUBLE PRECISION array, dimension ( NMAX )
*> \endverbatim
*>
*> \param[out] D_WORK_ZPOT03
*> \verbatim
*> D_WORK_ZPOT03 is DOUBLE PRECISION array, dimension ( NMAX )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZDRVRFP( NOUT, NN, NVAL, NNS, NSVAL, NNT, NTVAL,
+ THRESH, A, ASAV, AFAC, AINV, B,
+ BSAV, XACT, X, ARF, ARFINV,
+ Z_WORK_ZLATMS, Z_WORK_ZPOT02,
+ Z_WORK_ZPOT03, D_WORK_ZLATMS, D_WORK_ZLANHE,
+ D_WORK_ZPOT01, D_WORK_ZPOT02, D_WORK_ZPOT03 )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER NN, NNS, NNT, NOUT
DOUBLE PRECISION THRESH
* ..
* .. Array Arguments ..
INTEGER NVAL( NN ), NSVAL( NNS ), NTVAL( NNT )
COMPLEX*16 A( * )
COMPLEX*16 AINV( * )
COMPLEX*16 ASAV( * )
COMPLEX*16 B( * )
COMPLEX*16 BSAV( * )
COMPLEX*16 AFAC( * )
COMPLEX*16 ARF( * )
COMPLEX*16 ARFINV( * )
COMPLEX*16 XACT( * )
COMPLEX*16 X( * )
COMPLEX*16 Z_WORK_ZLATMS( * )
COMPLEX*16 Z_WORK_ZPOT02( * )
COMPLEX*16 Z_WORK_ZPOT03( * )
DOUBLE PRECISION D_WORK_ZLATMS( * )
DOUBLE PRECISION D_WORK_ZLANHE( * )
DOUBLE PRECISION D_WORK_ZPOT01( * )
DOUBLE PRECISION D_WORK_ZPOT02( * )
DOUBLE PRECISION D_WORK_ZPOT03( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
INTEGER NTESTS
PARAMETER ( NTESTS = 4 )
* ..
* .. Local Scalars ..
LOGICAL ZEROT
INTEGER I, INFO, IUPLO, LDA, LDB, IMAT, NERRS, NFAIL,
+ NRHS, NRUN, IZERO, IOFF, K, NT, N, IFORM, IIN,
+ IIT, IIS
CHARACTER DIST, CTYPE, UPLO, CFORM
INTEGER KL, KU, MODE
DOUBLE PRECISION ANORM, AINVNM, CNDNUM, RCONDC
* ..
* .. Local Arrays ..
CHARACTER UPLOS( 2 ), FORMS( 2 )
INTEGER ISEED( 4 ), ISEEDY( 4 )
DOUBLE PRECISION RESULT( NTESTS )
* ..
* .. External Functions ..
DOUBLE PRECISION ZLANHE
EXTERNAL ZLANHE
* ..
* .. External Subroutines ..
EXTERNAL ALADHD, ALAERH, ALASVM, ZGET04, ZTFTTR, ZLACPY,
+ ZLAIPD, ZLARHS, ZLATB4, ZLATMS, ZPFTRI, ZPFTRF,
+ ZPFTRS, ZPOT01, ZPOT02, ZPOT03, ZPOTRI, ZPOTRF,
+ ZTRTTF
* ..
* .. Scalars in Common ..
CHARACTER*32 SRNAMT
* ..
* .. Common blocks ..
COMMON / SRNAMC / SRNAMT
* ..
* .. Data statements ..
DATA ISEEDY / 1988, 1989, 1990, 1991 /
DATA UPLOS / 'U', 'L' /
DATA FORMS / 'N', 'C' /
* ..
* .. Executable Statements ..
*
* Initialize constants and the random number seed.
*
NRUN = 0
NFAIL = 0
NERRS = 0
DO 10 I = 1, 4
ISEED( I ) = ISEEDY( I )
10 CONTINUE
*
DO 130 IIN = 1, NN
*
N = NVAL( IIN )
LDA = MAX( N, 1 )
LDB = MAX( N, 1 )
*
DO 980 IIS = 1, NNS
*
NRHS = NSVAL( IIS )
*
DO 120 IIT = 1, NNT
*
IMAT = NTVAL( IIT )
*
* If N.EQ.0, only consider the first type
*
IF( N.EQ.0 .AND. IIT.GT.1 ) GO TO 120
*
* Skip types 3, 4, or 5 if the matrix size is too small.
*
IF( IMAT.EQ.4 .AND. N.LE.1 ) GO TO 120
IF( IMAT.EQ.5 .AND. N.LE.2 ) GO TO 120
*
* Do first for UPLO = 'U', then for UPLO = 'L'
*
DO 110 IUPLO = 1, 2
UPLO = UPLOS( IUPLO )
*
* Do first for CFORM = 'N', then for CFORM = 'C'
*
DO 100 IFORM = 1, 2
CFORM = FORMS( IFORM )
*
* Set up parameters with ZLATB4 and generate a test
* matrix with ZLATMS.
*
CALL ZLATB4( 'ZPO', IMAT, N, N, CTYPE, KL, KU,
+ ANORM, MODE, CNDNUM, DIST )
*
SRNAMT = 'ZLATMS'
CALL ZLATMS( N, N, DIST, ISEED, CTYPE,
+ D_WORK_ZLATMS,
+ MODE, CNDNUM, ANORM, KL, KU, UPLO, A,
+ LDA, Z_WORK_ZLATMS, INFO )
*
* Check error code from ZLATMS.
*
IF( INFO.NE.0 ) THEN
CALL ALAERH( 'ZPF', 'ZLATMS', INFO, 0, UPLO, N,
+ N, -1, -1, -1, IIT, NFAIL, NERRS,
+ NOUT )
GO TO 100
END IF
*
* For types 3-5, zero one row and column of the matrix to
* test that INFO is returned correctly.
*
ZEROT = IMAT.GE.3 .AND. IMAT.LE.5
IF( ZEROT ) THEN
IF( IIT.EQ.3 ) THEN
IZERO = 1
ELSE IF( IIT.EQ.4 ) THEN
IZERO = N
ELSE
IZERO = N / 2 + 1
END IF
IOFF = ( IZERO-1 )*LDA
*
* Set row and column IZERO of A to 0.
*
IF( IUPLO.EQ.1 ) THEN
DO 20 I = 1, IZERO - 1
A( IOFF+I ) = ZERO
20 CONTINUE
IOFF = IOFF + IZERO
DO 30 I = IZERO, N
A( IOFF ) = ZERO
IOFF = IOFF + LDA
30 CONTINUE
ELSE
IOFF = IZERO
DO 40 I = 1, IZERO - 1
A( IOFF ) = ZERO
IOFF = IOFF + LDA
40 CONTINUE
IOFF = IOFF - IZERO
DO 50 I = IZERO, N
A( IOFF+I ) = ZERO
50 CONTINUE
END IF
ELSE
IZERO = 0
END IF
*
* Set the imaginary part of the diagonals.
*
CALL ZLAIPD( N, A, LDA+1, 0 )
*
* Save a copy of the matrix A in ASAV.
*
CALL ZLACPY( UPLO, N, N, A, LDA, ASAV, LDA )
*
* Compute the condition number of A (RCONDC).
*
IF( ZEROT ) THEN
RCONDC = ZERO
ELSE
*
* Compute the 1-norm of A.
*
ANORM = ZLANHE( '1', UPLO, N, A, LDA,
+ D_WORK_ZLANHE )
*
* Factor the matrix A.
*
CALL ZPOTRF( UPLO, N, A, LDA, INFO )
*
* Form the inverse of A.
*
CALL ZPOTRI( UPLO, N, A, LDA, INFO )
*
* Compute the 1-norm condition number of A.
*
AINVNM = ZLANHE( '1', UPLO, N, A, LDA,
+ D_WORK_ZLANHE )
RCONDC = ( ONE / ANORM ) / AINVNM
*
* Restore the matrix A.
*
CALL ZLACPY( UPLO, N, N, ASAV, LDA, A, LDA )
*
END IF
*
* Form an exact solution and set the right hand side.
*
SRNAMT = 'ZLARHS'
CALL ZLARHS( 'ZPO', 'N', UPLO, ' ', N, N, KL, KU,
+ NRHS, A, LDA, XACT, LDA, B, LDA,
+ ISEED, INFO )
CALL ZLACPY( 'Full', N, NRHS, B, LDA, BSAV, LDA )
*
* Compute the L*L' or U'*U factorization of the
* matrix and solve the system.
*
CALL ZLACPY( UPLO, N, N, A, LDA, AFAC, LDA )
CALL ZLACPY( 'Full', N, NRHS, B, LDB, X, LDB )
*
SRNAMT = 'ZTRTTF'
CALL ZTRTTF( CFORM, UPLO, N, AFAC, LDA, ARF, INFO )
SRNAMT = 'ZPFTRF'
CALL ZPFTRF( CFORM, UPLO, N, ARF, INFO )
*
* Check error code from ZPFTRF.
*
IF( INFO.NE.IZERO ) THEN
*
* LANGOU: there is a small hick here: IZERO should
* always be INFO however if INFO is ZERO, ALAERH does not
* complain.
*
CALL ALAERH( 'ZPF', 'ZPFSV ', INFO, IZERO,
+ UPLO, N, N, -1, -1, NRHS, IIT,
+ NFAIL, NERRS, NOUT )
GO TO 100
END IF
*
* Skip the tests if INFO is not 0.
*
IF( INFO.NE.0 ) THEN
GO TO 100
END IF
*
SRNAMT = 'ZPFTRS'
CALL ZPFTRS( CFORM, UPLO, N, NRHS, ARF, X, LDB,
+ INFO )
*
SRNAMT = 'ZTFTTR'
CALL ZTFTTR( CFORM, UPLO, N, ARF, AFAC, LDA, INFO )
*
* Reconstruct matrix from factors and compute
* residual.
*
CALL ZLACPY( UPLO, N, N, AFAC, LDA, ASAV, LDA )
CALL ZPOT01( UPLO, N, A, LDA, AFAC, LDA,
+ D_WORK_ZPOT01, RESULT( 1 ) )
CALL ZLACPY( UPLO, N, N, ASAV, LDA, AFAC, LDA )
*
* Form the inverse and compute the residual.
*
IF(MOD(N,2).EQ.0)THEN
CALL ZLACPY( 'A', N+1, N/2, ARF, N+1, ARFINV,
+ N+1 )
ELSE
CALL ZLACPY( 'A', N, (N+1)/2, ARF, N, ARFINV,
+ N )
END IF
*
SRNAMT = 'ZPFTRI'
CALL ZPFTRI( CFORM, UPLO, N, ARFINV , INFO )
*
SRNAMT = 'ZTFTTR'
CALL ZTFTTR( CFORM, UPLO, N, ARFINV, AINV, LDA,
+ INFO )
*
* Check error code from ZPFTRI.
*
IF( INFO.NE.0 )
+ CALL ALAERH( 'ZPO', 'ZPFTRI', INFO, 0, UPLO, N,
+ N, -1, -1, -1, IMAT, NFAIL, NERRS,
+ NOUT )
*
CALL ZPOT03( UPLO, N, A, LDA, AINV, LDA,
+ Z_WORK_ZPOT03, LDA, D_WORK_ZPOT03,
+ RCONDC, RESULT( 2 ) )
*
* Compute residual of the computed solution.
*
CALL ZLACPY( 'Full', N, NRHS, B, LDA,
+ Z_WORK_ZPOT02, LDA )
CALL ZPOT02( UPLO, N, NRHS, A, LDA, X, LDA,
+ Z_WORK_ZPOT02, LDA, D_WORK_ZPOT02,
+ RESULT( 3 ) )
*
* Check solution from generated exact solution.
*
CALL ZGET04( N, NRHS, X, LDA, XACT, LDA, RCONDC,
+ RESULT( 4 ) )
NT = 4
*
* Print information about the tests that did not
* pass the threshold.
*
DO 60 K = 1, NT
IF( RESULT( K ).GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. NERRS.EQ.0 )
+ CALL ALADHD( NOUT, 'ZPF' )
WRITE( NOUT, FMT = 9999 )'ZPFSV ', UPLO,
+ N, IIT, K, RESULT( K )
NFAIL = NFAIL + 1
END IF
60 CONTINUE
NRUN = NRUN + NT
100 CONTINUE
110 CONTINUE
120 CONTINUE
980 CONTINUE
130 CONTINUE
*
* Print a summary of the results.
*
CALL ALASVM( 'ZPF', NOUT, NFAIL, NRUN, NERRS )
*
9999 FORMAT( 1X, A6, ', UPLO=''', A1, ''', N =', I5, ', type ', I1,
+ ', test(', I1, ')=', G12.5 )
*
RETURN
*
* End of ZDRVRFP
*
END
|