File: zget03.f

package info (click to toggle)
lapack 3.4.1%2Bdfsg-1%2Bdeb70u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 103,172 kB
  • sloc: fortran: 469,422; ansic: 127,041; makefile: 3,817; python: 267; sh: 94
file content (191 lines) | stat: -rw-r--r-- 5,005 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
*> \brief \b ZGET03
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE ZGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
*                          RCOND, RESID )
* 
*       .. Scalar Arguments ..
*       INTEGER            LDA, LDAINV, LDWORK, N
*       DOUBLE PRECISION   RCOND, RESID
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   RWORK( * )
*       COMPLEX*16         A( LDA, * ), AINV( LDAINV, * ),
*      $                   WORK( LDWORK, * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> ZGET03 computes the residual for a general matrix times its inverse:
*>    norm( I - AINV*A ) / ( N * norm(A) * norm(AINV) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of rows and columns of the matrix A.  N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*>          A is COMPLEX*16 array, dimension (LDA,N)
*>          The original N x N matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*>          LDA is INTEGER
*>          The leading dimension of the array A.  LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] AINV
*> \verbatim
*>          AINV is COMPLEX*16 array, dimension (LDAINV,N)
*>          The inverse of the matrix A.
*> \endverbatim
*>
*> \param[in] LDAINV
*> \verbatim
*>          LDAINV is INTEGER
*>          The leading dimension of the array AINV.  LDAINV >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is COMPLEX*16 array, dimension (LDWORK,N)
*> \endverbatim
*>
*> \param[in] LDWORK
*> \verbatim
*>          LDWORK is INTEGER
*>          The leading dimension of the array WORK.  LDWORK >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*>          RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*>          RCOND is DOUBLE PRECISION
*>          The reciprocal of the condition number of A, computed as
*>          ( 1/norm(A) ) / norm(AINV).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          norm(I - AINV*A) / ( N * norm(A) * norm(AINV) * EPS )
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
*  =====================================================================
      SUBROUTINE ZGET03( N, A, LDA, AINV, LDAINV, WORK, LDWORK, RWORK,
     $                   RCOND, RESID )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            LDA, LDAINV, LDWORK, N
      DOUBLE PRECISION   RCOND, RESID
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   RWORK( * )
      COMPLEX*16         A( LDA, * ), AINV( LDAINV, * ),
     $                   WORK( LDWORK, * )
*     ..
*
*  =====================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
      COMPLEX*16         CZERO, CONE
      PARAMETER          ( CZERO = ( 0.0D+0, 0.0D+0 ),
     $                   CONE = ( 1.0D+0, 0.0D+0 ) )
*     ..
*     .. Local Scalars ..
      INTEGER            I
      DOUBLE PRECISION   AINVNM, ANORM, EPS
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DLAMCH, ZLANGE
      EXTERNAL           DLAMCH, ZLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           ZGEMM
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE
*     ..
*     .. Executable Statements ..
*
*     Quick exit if N = 0.
*
      IF( N.LE.0 ) THEN
         RCOND = ONE
         RESID = ZERO
         RETURN
      END IF
*
*     Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
      EPS = DLAMCH( 'Epsilon' )
      ANORM = ZLANGE( '1', N, N, A, LDA, RWORK )
      AINVNM = ZLANGE( '1', N, N, AINV, LDAINV, RWORK )
      IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
         RCOND = ZERO
         RESID = ONE / EPS
         RETURN
      END IF
      RCOND = ( ONE / ANORM ) / AINVNM
*
*     Compute I - A * AINV
*
      CALL ZGEMM( 'No transpose', 'No transpose', N, N, N, -CONE, AINV,
     $            LDAINV, A, LDA, CZERO, WORK, LDWORK )
      DO 10 I = 1, N
         WORK( I, I ) = CONE + WORK( I, I )
   10 CONTINUE
*
*     Compute norm(I - AINV*A) / (N * norm(A) * norm(AINV) * EPS)
*
      RESID = ZLANGE( '1', N, N, WORK, LDWORK, RWORK )
*
      RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
*
      RETURN
*
*     End of ZGET03
*
      END