1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285
|
*> \brief \b ZSPT03
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE ZSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND,
* RESID )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER LDW, N
* DOUBLE PRECISION RCOND, RESID
* ..
* .. Array Arguments ..
* DOUBLE PRECISION RWORK( * )
* COMPLEX*16 A( * ), AINV( * ), WORK( LDW, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> ZSPT03 computes the residual for a complex symmetric packed matrix
*> times its inverse:
*> norm( I - A*AINV ) / ( N * norm(A) * norm(AINV) * EPS ),
*> where EPS is the machine epsilon.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER*1
*> Specifies whether the upper or lower triangular part of the
*> complex symmetric matrix A is stored:
*> = 'U': Upper triangular
*> = 'L': Lower triangular
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows and columns of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX*16 array, dimension (N*(N+1)/2)
*> The original complex symmetric matrix A, stored as a packed
*> triangular matrix.
*> \endverbatim
*>
*> \param[in] AINV
*> \verbatim
*> AINV is COMPLEX*16 array, dimension (N*(N+1)/2)
*> The (symmetric) inverse of the matrix A, stored as a packed
*> triangular matrix.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX*16 array, dimension (LDW,N)
*> \endverbatim
*>
*> \param[in] LDW
*> \verbatim
*> LDW is INTEGER
*> The leading dimension of the array WORK. LDW >= max(1,N).
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (N)
*> \endverbatim
*>
*> \param[out] RCOND
*> \verbatim
*> RCOND is DOUBLE PRECISION
*> The reciprocal of the condition number of A, computed as
*> ( 1/norm(A) ) / norm(AINV).
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is DOUBLE PRECISION
*> norm(I - A*AINV) / ( N * norm(A) * norm(AINV) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex16_lin
*
* =====================================================================
SUBROUTINE ZSPT03( UPLO, N, A, AINV, WORK, LDW, RWORK, RCOND,
$ RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER LDW, N
DOUBLE PRECISION RCOND, RESID
* ..
* .. Array Arguments ..
DOUBLE PRECISION RWORK( * )
COMPLEX*16 A( * ), AINV( * ), WORK( LDW, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I, ICOL, J, JCOL, K, KCOL, NALL
DOUBLE PRECISION AINVNM, ANORM, EPS
COMPLEX*16 T
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, ZLANGE, ZLANSP
COMPLEX*16 ZDOTU
EXTERNAL LSAME, DLAMCH, ZLANGE, ZLANSP, ZDOTU
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE
* ..
* .. Executable Statements ..
*
* Quick exit if N = 0.
*
IF( N.LE.0 ) THEN
RCOND = ONE
RESID = ZERO
RETURN
END IF
*
* Exit with RESID = 1/EPS if ANORM = 0 or AINVNM = 0.
*
EPS = DLAMCH( 'Epsilon' )
ANORM = ZLANSP( '1', UPLO, N, A, RWORK )
AINVNM = ZLANSP( '1', UPLO, N, AINV, RWORK )
IF( ANORM.LE.ZERO .OR. AINVNM.LE.ZERO ) THEN
RCOND = ZERO
RESID = ONE / EPS
RETURN
END IF
RCOND = ( ONE / ANORM ) / AINVNM
*
* Case where both A and AINV are upper triangular:
* Each element of - A * AINV is computed by taking the dot product
* of a row of A with a column of AINV.
*
IF( LSAME( UPLO, 'U' ) ) THEN
DO 70 I = 1, N
ICOL = ( ( I-1 )*I ) / 2 + 1
*
* Code when J <= I
*
DO 30 J = 1, I
JCOL = ( ( J-1 )*J ) / 2 + 1
T = ZDOTU( J, A( ICOL ), 1, AINV( JCOL ), 1 )
JCOL = JCOL + 2*J - 1
KCOL = ICOL - 1
DO 10 K = J + 1, I
T = T + A( KCOL+K )*AINV( JCOL )
JCOL = JCOL + K
10 CONTINUE
KCOL = KCOL + 2*I
DO 20 K = I + 1, N
T = T + A( KCOL )*AINV( JCOL )
KCOL = KCOL + K
JCOL = JCOL + K
20 CONTINUE
WORK( I, J ) = -T
30 CONTINUE
*
* Code when J > I
*
DO 60 J = I + 1, N
JCOL = ( ( J-1 )*J ) / 2 + 1
T = ZDOTU( I, A( ICOL ), 1, AINV( JCOL ), 1 )
JCOL = JCOL - 1
KCOL = ICOL + 2*I - 1
DO 40 K = I + 1, J
T = T + A( KCOL )*AINV( JCOL+K )
KCOL = KCOL + K
40 CONTINUE
JCOL = JCOL + 2*J
DO 50 K = J + 1, N
T = T + A( KCOL )*AINV( JCOL )
KCOL = KCOL + K
JCOL = JCOL + K
50 CONTINUE
WORK( I, J ) = -T
60 CONTINUE
70 CONTINUE
ELSE
*
* Case where both A and AINV are lower triangular
*
NALL = ( N*( N+1 ) ) / 2
DO 140 I = 1, N
*
* Code when J <= I
*
ICOL = NALL - ( ( N-I+1 )*( N-I+2 ) ) / 2 + 1
DO 100 J = 1, I
JCOL = NALL - ( ( N-J )*( N-J+1 ) ) / 2 - ( N-I )
T = ZDOTU( N-I+1, A( ICOL ), 1, AINV( JCOL ), 1 )
KCOL = I
JCOL = J
DO 80 K = 1, J - 1
T = T + A( KCOL )*AINV( JCOL )
JCOL = JCOL + N - K
KCOL = KCOL + N - K
80 CONTINUE
JCOL = JCOL - J
DO 90 K = J, I - 1
T = T + A( KCOL )*AINV( JCOL+K )
KCOL = KCOL + N - K
90 CONTINUE
WORK( I, J ) = -T
100 CONTINUE
*
* Code when J > I
*
ICOL = NALL - ( ( N-I )*( N-I+1 ) ) / 2
DO 130 J = I + 1, N
JCOL = NALL - ( ( N-J+1 )*( N-J+2 ) ) / 2 + 1
T = ZDOTU( N-J+1, A( ICOL-N+J ), 1, AINV( JCOL ), 1 )
KCOL = I
JCOL = J
DO 110 K = 1, I - 1
T = T + A( KCOL )*AINV( JCOL )
JCOL = JCOL + N - K
KCOL = KCOL + N - K
110 CONTINUE
KCOL = KCOL - I
DO 120 K = I, J - 1
T = T + A( KCOL+K )*AINV( JCOL )
JCOL = JCOL + N - K
120 CONTINUE
WORK( I, J ) = -T
130 CONTINUE
140 CONTINUE
END IF
*
* Add the identity matrix to WORK .
*
DO 150 I = 1, N
WORK( I, I ) = WORK( I, I ) + ONE
150 CONTINUE
*
* Compute norm(I - A*AINV) / (N * norm(A) * norm(AINV) * EPS)
*
RESID = ZLANGE( '1', N, N, WORK, LDW, RWORK )
*
RESID = ( ( RESID*RCOND ) / EPS ) / DBLE( N )
*
RETURN
*
* End of ZSPT03
*
END
|