1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
*> \brief \b CLAGHE
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CLAGHE( N, K, D, A, LDA, ISEED, WORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, K, LDA, N
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* REAL D( * )
* COMPLEX A( LDA, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLAGHE generates a complex hermitian matrix A, by pre- and post-
*> multiplying a real diagonal matrix D with a random unitary matrix:
*> A = U*D*U'. The semi-bandwidth may then be reduced to k by additional
*> unitary transformations.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of nonzero subdiagonals within the band of A.
*> 0 <= K <= N-1.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is REAL array, dimension (N)
*> The diagonal elements of the diagonal matrix D.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The generated n by n hermitian matrix A (the full matrix is
*> stored).
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= N.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry, the seed of the random number generator; the array
*> elements must be between 0 and 4095, and ISEED(4) must be
*> odd.
*> On exit, the seed is updated.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_matgen
*
* =====================================================================
SUBROUTINE CLAGHE( N, K, D, A, LDA, ISEED, WORK, INFO )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, K, LDA, N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
REAL D( * )
COMPLEX A( LDA, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO, ONE, HALF
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
$ ONE = ( 1.0E+0, 0.0E+0 ),
$ HALF = ( 0.5E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, J
REAL WN
COMPLEX ALPHA, TAU, WA, WB
* ..
* .. External Subroutines ..
EXTERNAL CAXPY, CGEMV, CGERC, CHEMV, CHER2, CLARNV,
$ CSCAL, XERBLA
* ..
* .. External Functions ..
REAL SCNRM2
COMPLEX CDOTC
EXTERNAL SCNRM2, CDOTC
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX, REAL
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( K.LT.0 .OR. K.GT.N-1 ) THEN
INFO = -2
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -5
END IF
IF( INFO.LT.0 ) THEN
CALL XERBLA( 'CLAGHE', -INFO )
RETURN
END IF
*
* initialize lower triangle of A to diagonal matrix
*
DO 20 J = 1, N
DO 10 I = J + 1, N
A( I, J ) = ZERO
10 CONTINUE
20 CONTINUE
DO 30 I = 1, N
A( I, I ) = D( I )
30 CONTINUE
*
* Generate lower triangle of hermitian matrix
*
DO 40 I = N - 1, 1, -1
*
* generate random reflection
*
CALL CLARNV( 3, ISEED, N-I+1, WORK )
WN = SCNRM2( N-I+1, WORK, 1 )
WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
IF( WN.EQ.ZERO ) THEN
TAU = ZERO
ELSE
WB = WORK( 1 ) + WA
CALL CSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
WORK( 1 ) = ONE
TAU = REAL( WB / WA )
END IF
*
* apply random reflection to A(i:n,i:n) from the left
* and the right
*
* compute y := tau * A * u
*
CALL CHEMV( 'Lower', N-I+1, TAU, A( I, I ), LDA, WORK, 1, ZERO,
$ WORK( N+1 ), 1 )
*
* compute v := y - 1/2 * tau * ( y, u ) * u
*
ALPHA = -HALF*TAU*CDOTC( N-I+1, WORK( N+1 ), 1, WORK, 1 )
CALL CAXPY( N-I+1, ALPHA, WORK, 1, WORK( N+1 ), 1 )
*
* apply the transformation as a rank-2 update to A(i:n,i:n)
*
CALL CHER2( 'Lower', N-I+1, -ONE, WORK, 1, WORK( N+1 ), 1,
$ A( I, I ), LDA )
40 CONTINUE
*
* Reduce number of subdiagonals to K
*
DO 60 I = 1, N - 1 - K
*
* generate reflection to annihilate A(k+i+1:n,i)
*
WN = SCNRM2( N-K-I+1, A( K+I, I ), 1 )
WA = ( WN / ABS( A( K+I, I ) ) )*A( K+I, I )
IF( WN.EQ.ZERO ) THEN
TAU = ZERO
ELSE
WB = A( K+I, I ) + WA
CALL CSCAL( N-K-I, ONE / WB, A( K+I+1, I ), 1 )
A( K+I, I ) = ONE
TAU = REAL( WB / WA )
END IF
*
* apply reflection to A(k+i:n,i+1:k+i-1) from the left
*
CALL CGEMV( 'Conjugate transpose', N-K-I+1, K-1, ONE,
$ A( K+I, I+1 ), LDA, A( K+I, I ), 1, ZERO, WORK, 1 )
CALL CGERC( N-K-I+1, K-1, -TAU, A( K+I, I ), 1, WORK, 1,
$ A( K+I, I+1 ), LDA )
*
* apply reflection to A(k+i:n,k+i:n) from the left and the right
*
* compute y := tau * A * u
*
CALL CHEMV( 'Lower', N-K-I+1, TAU, A( K+I, K+I ), LDA,
$ A( K+I, I ), 1, ZERO, WORK, 1 )
*
* compute v := y - 1/2 * tau * ( y, u ) * u
*
ALPHA = -HALF*TAU*CDOTC( N-K-I+1, WORK, 1, A( K+I, I ), 1 )
CALL CAXPY( N-K-I+1, ALPHA, A( K+I, I ), 1, WORK, 1 )
*
* apply hermitian rank-2 update to A(k+i:n,k+i:n)
*
CALL CHER2( 'Lower', N-K-I+1, -ONE, A( K+I, I ), 1, WORK, 1,
$ A( K+I, K+I ), LDA )
*
A( K+I, I ) = -WA
DO 50 J = K + I + 1, N
A( J, I ) = ZERO
50 CONTINUE
60 CONTINUE
*
* Store full hermitian matrix
*
DO 80 J = 1, N
DO 70 I = J + 1, N
A( J, I ) = CONJG( A( I, J ) )
70 CONTINUE
80 CONTINUE
RETURN
*
* End of CLAGHE
*
END
|