1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191
|
*> \brief \b CLAKF2
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CLAKF2( M, N, A, LDA, B, D, E, Z, LDZ )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDZ, M, N
* ..
* .. Array Arguments ..
* COMPLEX A( LDA, * ), B( LDA, * ), D( LDA, * ),
* $ E( LDA, * ), Z( LDZ, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> Form the 2*M*N by 2*M*N matrix
*>
*> Z = [ kron(In, A) -kron(B', Im) ]
*> [ kron(In, D) -kron(E', Im) ],
*>
*> where In is the identity matrix of size n and X' is the transpose
*> of X. kron(X, Y) is the Kronecker product between the matrices X
*> and Y.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> Size of matrix, must be >= 1.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> Size of matrix, must be >= 1.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX, dimension ( LDA, M )
*> The matrix A in the output matrix Z.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A, B, D, and E. ( LDA >= M+N )
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX, dimension ( LDA, N )
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is COMPLEX, dimension ( LDA, M )
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is COMPLEX, dimension ( LDA, N )
*>
*> The matrices used in forming the output matrix Z.
*> \endverbatim
*>
*> \param[out] Z
*> \verbatim
*> Z is COMPLEX, dimension ( LDZ, 2*M*N )
*> The resultant Kronecker M*N*2 by M*N*2 matrix (see above.)
*> \endverbatim
*>
*> \param[in] LDZ
*> \verbatim
*> LDZ is INTEGER
*> The leading dimension of Z. ( LDZ >= 2*M*N )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_matgen
*
* =====================================================================
SUBROUTINE CLAKF2( M, N, A, LDA, B, D, E, Z, LDZ )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDZ, M, N
* ..
* .. Array Arguments ..
COMPLEX A( LDA, * ), B( LDA, * ), D( LDA, * ),
$ E( LDA, * ), Z( LDZ, * )
* ..
*
* ====================================================================
*
* .. Parameters ..
COMPLEX ZERO
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, IK, J, JK, L, MN, MN2
* ..
* .. External Subroutines ..
EXTERNAL CLASET
* ..
* .. Executable Statements ..
*
* Initialize Z
*
MN = M*N
MN2 = 2*MN
CALL CLASET( 'Full', MN2, MN2, ZERO, ZERO, Z, LDZ )
*
IK = 1
DO 50 L = 1, N
*
* form kron(In, A)
*
DO 20 I = 1, M
DO 10 J = 1, M
Z( IK+I-1, IK+J-1 ) = A( I, J )
10 CONTINUE
20 CONTINUE
*
* form kron(In, D)
*
DO 40 I = 1, M
DO 30 J = 1, M
Z( IK+MN+I-1, IK+J-1 ) = D( I, J )
30 CONTINUE
40 CONTINUE
*
IK = IK + M
50 CONTINUE
*
IK = 1
DO 90 L = 1, N
JK = MN + 1
*
DO 80 J = 1, N
*
* form -kron(B', Im)
*
DO 60 I = 1, M
Z( IK+I-1, JK+I-1 ) = -B( J, L )
60 CONTINUE
*
* form -kron(E', Im)
*
DO 70 I = 1, M
Z( IK+MN+I-1, JK+I-1 ) = -E( J, L )
70 CONTINUE
*
JK = JK + M
80 CONTINUE
*
IK = IK + M
90 CONTINUE
*
RETURN
*
* End of CLAKF2
*
END
|