1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
|
*> \brief \b CLARGE
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CLARGE( N, A, LDA, ISEED, WORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* COMPLEX A( LDA, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLARGE pre- and post-multiplies a complex general n by n matrix A
*> with a random unitary matrix: A = U*D*U'.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> On entry, the original n by n matrix A.
*> On exit, A is overwritten by U*A*U' for some random
*> unitary matrix U.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= N.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry, the seed of the random number generator; the array
*> elements must be between 0 and 4095, and ISEED(4) must be
*> odd.
*> On exit, the seed is updated.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_matgen
*
* =====================================================================
SUBROUTINE CLARGE( N, A, LDA, ISEED, WORK, INFO )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
COMPLEX A( LDA, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
$ ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I
REAL WN
COMPLEX TAU, WA, WB
* ..
* .. External Subroutines ..
EXTERNAL CGEMV, CGERC, CLARNV, CSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, REAL
* ..
* .. External Functions ..
REAL SCNRM2
EXTERNAL SCNRM2
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -3
END IF
IF( INFO.LT.0 ) THEN
CALL XERBLA( 'CLARGE', -INFO )
RETURN
END IF
*
* pre- and post-multiply A by random unitary matrix
*
DO 10 I = N, 1, -1
*
* generate random reflection
*
CALL CLARNV( 3, ISEED, N-I+1, WORK )
WN = SCNRM2( N-I+1, WORK, 1 )
WA = ( WN / ABS( WORK( 1 ) ) )*WORK( 1 )
IF( WN.EQ.ZERO ) THEN
TAU = ZERO
ELSE
WB = WORK( 1 ) + WA
CALL CSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
WORK( 1 ) = ONE
TAU = REAL( WB / WA )
END IF
*
* multiply A(i:n,1:n) by random reflection from the left
*
CALL CGEMV( 'Conjugate transpose', N-I+1, N, ONE, A( I, 1 ),
$ LDA, WORK, 1, ZERO, WORK( N+1 ), 1 )
CALL CGERC( N-I+1, N, -TAU, WORK, 1, WORK( N+1 ), 1, A( I, 1 ),
$ LDA )
*
* multiply A(1:n,i:n) by random reflection from the right
*
CALL CGEMV( 'No transpose', N, N-I+1, ONE, A( 1, I ), LDA,
$ WORK, 1, ZERO, WORK( N+1 ), 1 )
CALL CGERC( N, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1, A( 1, I ),
$ LDA )
10 CONTINUE
RETURN
*
* End of CLARGE
*
END
|