1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348
|
*> \brief \b CLAROR
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
*
* .. Scalar Arguments ..
* CHARACTER INIT, SIDE
* INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* COMPLEX A( LDA, * ), X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLAROR pre- or post-multiplies an M by N matrix A by a random
*> unitary matrix U, overwriting A. A may optionally be
*> initialized to the identity matrix before multiplying by U.
*> U is generated using the method of G.W. Stewart
*> ( SIAM J. Numer. Anal. 17, 1980, pp. 403-409 ).
*> (BLAS-2 version)
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] SIDE
*> \verbatim
*> SIDE is CHARACTER*1
*> SIDE specifies whether A is multiplied on the left or right
*> by U.
*> SIDE = 'L' Multiply A on the left (premultiply) by U
*> SIDE = 'R' Multiply A on the right (postmultiply) by UC> SIDE = 'C' Multiply A on the left by U and the right by UC> SIDE = 'T' Multiply A on the left by U and the right by U'
*> Not modified.
*> \endverbatim
*>
*> \param[in] INIT
*> \verbatim
*> INIT is CHARACTER*1
*> INIT specifies whether or not A should be initialized to
*> the identity matrix.
*> INIT = 'I' Initialize A to (a section of) the
*> identity matrix before applying U.
*> INIT = 'N' No initialization. Apply U to the
*> input matrix A.
*>
*> INIT = 'I' may be used to generate square (i.e., unitary)
*> or rectangular orthogonal matrices (orthogonality being
*> in the sense of CDOTC):
*>
*> For square matrices, M=N, and SIDE many be either 'L' or
*> 'R'; the rows will be orthogonal to each other, as will the
*> columns.
*> For rectangular matrices where M < N, SIDE = 'R' will
*> produce a dense matrix whose rows will be orthogonal and
*> whose columns will not, while SIDE = 'L' will produce a
*> matrix whose rows will be orthogonal, and whose first M
*> columns will be orthogonal, the remaining columns being
*> zero.
*> For matrices where M > N, just use the previous
*> explaination, interchanging 'L' and 'R' and "rows" and
*> "columns".
*>
*> Not modified.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> Number of rows of A. Not modified.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> Number of columns of A. Not modified.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, N )
*> Input and output array. Overwritten by U A ( if SIDE = 'L' )
*> or by A U ( if SIDE = 'R' )
*> or by U A U* ( if SIDE = 'C')
*> or by U A U' ( if SIDE = 'T') on exit.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> Leading dimension of A. Must be at least MAX ( 1, M ).
*> Not modified.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension ( 4 )
*> On entry ISEED specifies the seed of the random number
*> generator. The array elements should be between 0 and 4095;
*> if not they will be reduced mod 4096. Also, ISEED(4) must
*> be odd. The random number generator uses a linear
*> congruential sequence limited to small integers, and so
*> should produce machine independent random numbers. The
*> values of ISEED are changed on exit, and can be used in the
*> next call to CLAROR to continue the same random number
*> sequence.
*> Modified.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX array, dimension ( 3*MAX( M, N ) )
*> Workspace. Of length:
*> 2*M + N if SIDE = 'L',
*> 2*N + M if SIDE = 'R',
*> 3*N if SIDE = 'C' or 'T'.
*> Modified.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> An error flag. It is set to:
*> 0 if no error.
*> 1 if CLARND returned a bad random number (installation
*> problem)
*> -1 if SIDE is not L, R, C, or T.
*> -3 if M is negative.
*> -4 if N is negative or if SIDE is C or T and N is not equal
*> to M.
*> -6 if LDA is less than M.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_matgen
*
* =====================================================================
SUBROUTINE CLAROR( SIDE, INIT, M, N, A, LDA, ISEED, X, INFO )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER INIT, SIDE
INTEGER INFO, LDA, M, N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
COMPLEX A( LDA, * ), X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE, TOOSML
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0,
$ TOOSML = 1.0E-20 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER IROW, ITYPE, IXFRM, J, JCOL, KBEG, NXFRM
REAL FACTOR, XABS, XNORM
COMPLEX CSIGN, XNORMS
* ..
* .. External Functions ..
LOGICAL LSAME
REAL SCNRM2
COMPLEX CLARND
EXTERNAL LSAME, SCNRM2, CLARND
* ..
* .. External Subroutines ..
EXTERNAL CGEMV, CGERC, CLACGV, CLASET, CSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CMPLX, CONJG
* ..
* .. Executable Statements ..
*
INFO = 0
IF( N.EQ.0 .OR. M.EQ.0 )
$ RETURN
*
ITYPE = 0
IF( LSAME( SIDE, 'L' ) ) THEN
ITYPE = 1
ELSE IF( LSAME( SIDE, 'R' ) ) THEN
ITYPE = 2
ELSE IF( LSAME( SIDE, 'C' ) ) THEN
ITYPE = 3
ELSE IF( LSAME( SIDE, 'T' ) ) THEN
ITYPE = 4
END IF
*
* Check for argument errors.
*
IF( ITYPE.EQ.0 ) THEN
INFO = -1
ELSE IF( M.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 .OR. ( ITYPE.EQ.3 .AND. N.NE.M ) ) THEN
INFO = -4
ELSE IF( LDA.LT.M ) THEN
INFO = -6
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLAROR', -INFO )
RETURN
END IF
*
IF( ITYPE.EQ.1 ) THEN
NXFRM = M
ELSE
NXFRM = N
END IF
*
* Initialize A to the identity matrix if desired
*
IF( LSAME( INIT, 'I' ) )
$ CALL CLASET( 'Full', M, N, CZERO, CONE, A, LDA )
*
* If no rotation possible, still multiply by
* a random complex number from the circle |x| = 1
*
* 2) Compute Rotation by computing Householder
* Transformations H(2), H(3), ..., H(n). Note that the
* order in which they are computed is irrelevant.
*
DO 40 J = 1, NXFRM
X( J ) = CZERO
40 CONTINUE
*
DO 60 IXFRM = 2, NXFRM
KBEG = NXFRM - IXFRM + 1
*
* Generate independent normal( 0, 1 ) random numbers
*
DO 50 J = KBEG, NXFRM
X( J ) = CLARND( 3, ISEED )
50 CONTINUE
*
* Generate a Householder transformation from the random vector X
*
XNORM = SCNRM2( IXFRM, X( KBEG ), 1 )
XABS = ABS( X( KBEG ) )
IF( XABS.NE.CZERO ) THEN
CSIGN = X( KBEG ) / XABS
ELSE
CSIGN = CONE
END IF
XNORMS = CSIGN*XNORM
X( NXFRM+KBEG ) = -CSIGN
FACTOR = XNORM*( XNORM+XABS )
IF( ABS( FACTOR ).LT.TOOSML ) THEN
INFO = 1
CALL XERBLA( 'CLAROR', -INFO )
RETURN
ELSE
FACTOR = ONE / FACTOR
END IF
X( KBEG ) = X( KBEG ) + XNORMS
*
* Apply Householder transformation to A
*
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN
*
* Apply H(k) on the left of A
*
CALL CGEMV( 'C', IXFRM, N, CONE, A( KBEG, 1 ), LDA,
$ X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 )
CALL CGERC( IXFRM, N, -CMPLX( FACTOR ), X( KBEG ), 1,
$ X( 2*NXFRM+1 ), 1, A( KBEG, 1 ), LDA )
*
END IF
*
IF( ITYPE.GE.2 .AND. ITYPE.LE.4 ) THEN
*
* Apply H(k)* (or H(k)') on the right of A
*
IF( ITYPE.EQ.4 ) THEN
CALL CLACGV( IXFRM, X( KBEG ), 1 )
END IF
*
CALL CGEMV( 'N', M, IXFRM, CONE, A( 1, KBEG ), LDA,
$ X( KBEG ), 1, CZERO, X( 2*NXFRM+1 ), 1 )
CALL CGERC( M, IXFRM, -CMPLX( FACTOR ), X( 2*NXFRM+1 ), 1,
$ X( KBEG ), 1, A( 1, KBEG ), LDA )
*
END IF
60 CONTINUE
*
X( 1 ) = CLARND( 3, ISEED )
XABS = ABS( X( 1 ) )
IF( XABS.NE.ZERO ) THEN
CSIGN = X( 1 ) / XABS
ELSE
CSIGN = CONE
END IF
X( 2*NXFRM ) = CSIGN
*
* Scale the matrix A by D.
*
IF( ITYPE.EQ.1 .OR. ITYPE.EQ.3 .OR. ITYPE.EQ.4 ) THEN
DO 70 IROW = 1, M
CALL CSCAL( N, CONJG( X( NXFRM+IROW ) ), A( IROW, 1 ), LDA )
70 CONTINUE
END IF
*
IF( ITYPE.EQ.2 .OR. ITYPE.EQ.3 ) THEN
DO 80 JCOL = 1, N
CALL CSCAL( M, X( NXFRM+JCOL ), A( 1, JCOL ), 1 )
80 CONTINUE
END IF
*
IF( ITYPE.EQ.4 ) THEN
DO 90 JCOL = 1, N
CALL CSCAL( M, CONJG( X( NXFRM+JCOL ) ), A( 1, JCOL ), 1 )
90 CONTINUE
END IF
RETURN
*
* End of CLAROR
*
END
|