1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300
|
*> \brief \b CLATM6
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
* BETA, WX, WY, S, DIF )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDX, LDY, N, TYPE
* COMPLEX ALPHA, BETA, WX, WY
* ..
* .. Array Arguments ..
* REAL DIF( * ), S( * )
* COMPLEX A( LDA, * ), B( LDA, * ), X( LDX, * ),
* $ Y( LDY, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLATM6 generates test matrices for the generalized eigenvalue
*> problem, their corresponding right and left eigenvector matrices,
*> and also reciprocal condition numbers for all eigenvalues and
*> the reciprocal condition numbers of eigenvectors corresponding to
*> the 1th and 5th eigenvalues.
*>
*> Test Matrices
*> =============
*>
*> Two kinds of test matrix pairs
*> (A, B) = inverse(YH) * (Da, Db) * inverse(X)
*> are used in the tests:
*>
*> Type 1:
*> Da = 1+a 0 0 0 0 Db = 1 0 0 0 0
*> 0 2+a 0 0 0 0 1 0 0 0
*> 0 0 3+a 0 0 0 0 1 0 0
*> 0 0 0 4+a 0 0 0 0 1 0
*> 0 0 0 0 5+a , 0 0 0 0 1
*> and Type 2:
*> Da = 1+i 0 0 0 0 Db = 1 0 0 0 0
*> 0 1-i 0 0 0 0 1 0 0 0
*> 0 0 1 0 0 0 0 1 0 0
*> 0 0 0 (1+a)+(1+b)i 0 0 0 0 1 0
*> 0 0 0 0 (1+a)-(1+b)i, 0 0 0 0 1 .
*>
*> In both cases the same inverse(YH) and inverse(X) are used to compute
*> (A, B), giving the exact eigenvectors to (A,B) as (YH, X):
*>
*> YH: = 1 0 -y y -y X = 1 0 -x -x x
*> 0 1 -y y -y 0 1 x -x -x
*> 0 0 1 0 0 0 0 1 0 0
*> 0 0 0 1 0 0 0 0 1 0
*> 0 0 0 0 1, 0 0 0 0 1 , where
*>
*> a, b, x and y will have all values independently of each other.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] TYPE
*> \verbatim
*> TYPE is INTEGER
*> Specifies the problem type (see futher details).
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> Size of the matrices A and B.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA, N).
*> On exit A N-by-N is initialized according to TYPE.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A and of B.
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX array, dimension (LDA, N).
*> On exit B N-by-N is initialized according to TYPE.
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX array, dimension (LDX, N).
*> On exit X is the N-by-N matrix of right eigenvectors.
*> \endverbatim
*>
*> \param[in] LDX
*> \verbatim
*> LDX is INTEGER
*> The leading dimension of X.
*> \endverbatim
*>
*> \param[out] Y
*> \verbatim
*> Y is COMPLEX array, dimension (LDY, N).
*> On exit Y is the N-by-N matrix of left eigenvectors.
*> \endverbatim
*>
*> \param[in] LDY
*> \verbatim
*> LDY is INTEGER
*> The leading dimension of Y.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is COMPLEX
*>
*> Weighting constants for matrix A.
*> \endverbatim
*>
*> \param[in] WX
*> \verbatim
*> WX is COMPLEX
*> Constant for right eigenvector matrix.
*> \endverbatim
*>
*> \param[in] WY
*> \verbatim
*> WY is COMPLEX
*> Constant for left eigenvector matrix.
*> \endverbatim
*>
*> \param[out] S
*> \verbatim
*> S is REAL array, dimension (N)
*> S(i) is the reciprocal condition number for eigenvalue i.
*> \endverbatim
*>
*> \param[out] DIF
*> \verbatim
*> DIF is REAL array, dimension (N)
*> DIF(i) is the reciprocal condition number for eigenvector i.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_matgen
*
* =====================================================================
SUBROUTINE CLATM6( TYPE, N, A, LDA, B, X, LDX, Y, LDY, ALPHA,
$ BETA, WX, WY, S, DIF )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDX, LDY, N, TYPE
COMPLEX ALPHA, BETA, WX, WY
* ..
* .. Array Arguments ..
REAL DIF( * ), S( * )
COMPLEX A( LDA, * ), B( LDA, * ), X( LDX, * ),
$ Y( LDY, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL RONE, TWO, THREE
PARAMETER ( RONE = 1.0E+0, TWO = 2.0E+0, THREE = 3.0E+0 )
COMPLEX ZERO, ONE
PARAMETER ( ZERO = ( 0.0E+0, 0.0E+0 ),
$ ONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
INTEGER I, INFO, J
* ..
* .. Local Arrays ..
REAL RWORK( 50 )
COMPLEX WORK( 26 ), Z( 8, 8 )
* ..
* .. Intrinsic Functions ..
INTRINSIC CABS, CMPLX, CONJG, REAL, SQRT
* ..
* .. External Subroutines ..
EXTERNAL CGESVD, CLACPY, CLAKF2
* ..
* .. Executable Statements ..
*
* Generate test problem ...
* (Da, Db) ...
*
DO 20 I = 1, N
DO 10 J = 1, N
*
IF( I.EQ.J ) THEN
A( I, I ) = CMPLX( I ) + ALPHA
B( I, I ) = ONE
ELSE
A( I, J ) = ZERO
B( I, J ) = ZERO
END IF
*
10 CONTINUE
20 CONTINUE
IF( TYPE.EQ.2 ) THEN
A( 1, 1 ) = CMPLX( RONE, RONE )
A( 2, 2 ) = CONJG( A( 1, 1 ) )
A( 3, 3 ) = ONE
A( 4, 4 ) = CMPLX( REAL( ONE+ALPHA ), REAL( ONE+BETA ) )
A( 5, 5 ) = CONJG( A( 4, 4 ) )
END IF
*
* Form X and Y
*
CALL CLACPY( 'F', N, N, B, LDA, Y, LDY )
Y( 3, 1 ) = -CONJG( WY )
Y( 4, 1 ) = CONJG( WY )
Y( 5, 1 ) = -CONJG( WY )
Y( 3, 2 ) = -CONJG( WY )
Y( 4, 2 ) = CONJG( WY )
Y( 5, 2 ) = -CONJG( WY )
*
CALL CLACPY( 'F', N, N, B, LDA, X, LDX )
X( 1, 3 ) = -WX
X( 1, 4 ) = -WX
X( 1, 5 ) = WX
X( 2, 3 ) = WX
X( 2, 4 ) = -WX
X( 2, 5 ) = -WX
*
* Form (A, B)
*
B( 1, 3 ) = WX + WY
B( 2, 3 ) = -WX + WY
B( 1, 4 ) = WX - WY
B( 2, 4 ) = WX - WY
B( 1, 5 ) = -WX + WY
B( 2, 5 ) = WX + WY
A( 1, 3 ) = WX*A( 1, 1 ) + WY*A( 3, 3 )
A( 2, 3 ) = -WX*A( 2, 2 ) + WY*A( 3, 3 )
A( 1, 4 ) = WX*A( 1, 1 ) - WY*A( 4, 4 )
A( 2, 4 ) = WX*A( 2, 2 ) - WY*A( 4, 4 )
A( 1, 5 ) = -WX*A( 1, 1 ) + WY*A( 5, 5 )
A( 2, 5 ) = WX*A( 2, 2 ) + WY*A( 5, 5 )
*
* Compute condition numbers
*
S( 1 ) = RONE / SQRT( ( RONE+THREE*CABS( WY )*CABS( WY ) ) /
$ ( RONE+CABS( A( 1, 1 ) )*CABS( A( 1, 1 ) ) ) )
S( 2 ) = RONE / SQRT( ( RONE+THREE*CABS( WY )*CABS( WY ) ) /
$ ( RONE+CABS( A( 2, 2 ) )*CABS( A( 2, 2 ) ) ) )
S( 3 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) /
$ ( RONE+CABS( A( 3, 3 ) )*CABS( A( 3, 3 ) ) ) )
S( 4 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) /
$ ( RONE+CABS( A( 4, 4 ) )*CABS( A( 4, 4 ) ) ) )
S( 5 ) = RONE / SQRT( ( RONE+TWO*CABS( WX )*CABS( WX ) ) /
$ ( RONE+CABS( A( 5, 5 ) )*CABS( A( 5, 5 ) ) ) )
*
CALL CLAKF2( 1, 4, A, LDA, A( 2, 2 ), B, B( 2, 2 ), Z, 8 )
CALL CGESVD( 'N', 'N', 8, 8, Z, 8, RWORK, WORK, 1, WORK( 2 ), 1,
$ WORK( 3 ), 24, RWORK( 9 ), INFO )
DIF( 1 ) = RWORK( 8 )
*
CALL CLAKF2( 4, 1, A, LDA, A( 5, 5 ), B, B( 5, 5 ), Z, 8 )
CALL CGESVD( 'N', 'N', 8, 8, Z, 8, RWORK, WORK, 1, WORK( 2 ), 1,
$ WORK( 3 ), 24, RWORK( 9 ), INFO )
DIF( 5 ) = RWORK( 8 )
*
RETURN
*
* End of CLATM6
*
END
|