1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642
|
*> \brief \b CLATME
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CLATME( N, DIST, ISEED, D, MODE, COND, DMAX,
* RSIGN,
* UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM,
* A,
* LDA, WORK, INFO )
*
* .. Scalar Arguments ..
* CHARACTER DIST, RSIGN, SIM, UPPER
* INTEGER INFO, KL, KU, LDA, MODE, MODES, N
* REAL ANORM, COND, CONDS
* COMPLEX DMAX
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* REAL DS( * )
* COMPLEX A( LDA, * ), D( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CLATME generates random non-symmetric square matrices with
*> specified eigenvalues for testing LAPACK programs.
*>
*> CLATME operates by applying the following sequence of
*> operations:
*>
*> 1. Set the diagonal to D, where D may be input or
*> computed according to MODE, COND, DMAX, and RSIGN
*> as described below.
*>
*> 2. If UPPER='T', the upper triangle of A is set to random values
*> out of distribution DIST.
*>
*> 3. If SIM='T', A is multiplied on the left by a random matrix
*> X, whose singular values are specified by DS, MODES, and
*> CONDS, and on the right by X inverse.
*>
*> 4. If KL < N-1, the lower bandwidth is reduced to KL using
*> Householder transformations. If KU < N-1, the upper
*> bandwidth is reduced to KU.
*>
*> 5. If ANORM is not negative, the matrix is scaled to have
*> maximum-element-norm ANORM.
*>
*> (Note: since the matrix cannot be reduced beyond Hessenberg form,
*> no packing options are available.)
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns (or rows) of A. Not modified.
*> \endverbatim
*>
*> \param[in] DIST
*> \verbatim
*> DIST is CHARACTER*1
*> On entry, DIST specifies the type of distribution to be used
*> to generate the random eigen-/singular values, and on the
*> upper triangle (see UPPER).
*> 'U' => UNIFORM( 0, 1 ) ( 'U' for uniform )
*> 'S' => UNIFORM( -1, 1 ) ( 'S' for symmetric )
*> 'N' => NORMAL( 0, 1 ) ( 'N' for normal )
*> 'D' => uniform on the complex disc |z| < 1.
*> Not modified.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension ( 4 )
*> On entry ISEED specifies the seed of the random number
*> generator. They should lie between 0 and 4095 inclusive,
*> and ISEED(4) should be odd. The random number generator
*> uses a linear congruential sequence limited to small
*> integers, and so should produce machine independent
*> random numbers. The values of ISEED are changed on
*> exit, and can be used in the next call to CLATME
*> to continue the same random number sequence.
*> Changed on exit.
*> \endverbatim
*>
*> \param[in,out] D
*> \verbatim
*> D is COMPLEX array, dimension ( N )
*> This array is used to specify the eigenvalues of A. If
*> MODE=0, then D is assumed to contain the eigenvalues
*> otherwise they will be computed according to MODE, COND,
*> DMAX, and RSIGN and placed in D.
*> Modified if MODE is nonzero.
*> \endverbatim
*>
*> \param[in] MODE
*> \verbatim
*> MODE is INTEGER
*> On entry this describes how the eigenvalues are to
*> be specified:
*> MODE = 0 means use D as input
*> MODE = 1 sets D(1)=1 and D(2:N)=1.0/COND
*> MODE = 2 sets D(1:N-1)=1 and D(N)=1.0/COND
*> MODE = 3 sets D(I)=COND**(-(I-1)/(N-1))
*> MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
*> MODE = 5 sets D to random numbers in the range
*> ( 1/COND , 1 ) such that their logarithms
*> are uniformly distributed.
*> MODE = 6 set D to random numbers from same distribution
*> as the rest of the matrix.
*> MODE < 0 has the same meaning as ABS(MODE), except that
*> the order of the elements of D is reversed.
*> Thus if MODE is between 1 and 4, D has entries ranging
*> from 1 to 1/COND, if between -1 and -4, D has entries
*> ranging from 1/COND to 1,
*> Not modified.
*> \endverbatim
*>
*> \param[in] COND
*> \verbatim
*> COND is REAL
*> On entry, this is used as described under MODE above.
*> If used, it must be >= 1. Not modified.
*> \endverbatim
*>
*> \param[in] DMAX
*> \verbatim
*> DMAX is COMPLEX
*> If MODE is neither -6, 0 nor 6, the contents of D, as
*> computed according to MODE and COND, will be scaled by
*> DMAX / max(abs(D(i))). Note that DMAX need not be
*> positive or real: if DMAX is negative or complex (or zero),
*> D will be scaled by a negative or complex number (or zero).
*> If RSIGN='F' then the largest (absolute) eigenvalue will be
*> equal to DMAX.
*> Not modified.
*> \endverbatim
*>
*> \param[in] RSIGN
*> \verbatim
*> RSIGN is CHARACTER*1
*> If MODE is not 0, 6, or -6, and RSIGN='T', then the
*> elements of D, as computed according to MODE and COND, will
*> be multiplied by a random complex number from the unit
*> circle |z| = 1. If RSIGN='F', they will not be. RSIGN may
*> only have the values 'T' or 'F'.
*> Not modified.
*> \endverbatim
*>
*> \param[in] UPPER
*> \verbatim
*> UPPER is CHARACTER*1
*> If UPPER='T', then the elements of A above the diagonal
*> will be set to random numbers out of DIST. If UPPER='F',
*> they will not. UPPER may only have the values 'T' or 'F'.
*> Not modified.
*> \endverbatim
*>
*> \param[in] SIM
*> \verbatim
*> SIM is CHARACTER*1
*> If SIM='T', then A will be operated on by a "similarity
*> transform", i.e., multiplied on the left by a matrix X and
*> on the right by X inverse. X = U S V, where U and V are
*> random unitary matrices and S is a (diagonal) matrix of
*> singular values specified by DS, MODES, and CONDS. If
*> SIM='F', then A will not be transformed.
*> Not modified.
*> \endverbatim
*>
*> \param[in,out] DS
*> \verbatim
*> DS is REAL array, dimension ( N )
*> This array is used to specify the singular values of X,
*> in the same way that D specifies the eigenvalues of A.
*> If MODE=0, the DS contains the singular values, which
*> may not be zero.
*> Modified if MODE is nonzero.
*> \endverbatim
*>
*> \param[in] MODES
*> \verbatim
*> MODES is INTEGER
*> \endverbatim
*>
*> \param[in] CONDS
*> \verbatim
*> CONDS is REAL
*> Similar to MODE and COND, but for specifying the diagonal
*> of S. MODES=-6 and +6 are not allowed (since they would
*> result in randomly ill-conditioned eigenvalues.)
*> \endverbatim
*>
*> \param[in] KL
*> \verbatim
*> KL is INTEGER
*> This specifies the lower bandwidth of the matrix. KL=1
*> specifies upper Hessenberg form. If KL is at least N-1,
*> then A will have full lower bandwidth.
*> Not modified.
*> \endverbatim
*>
*> \param[in] KU
*> \verbatim
*> KU is INTEGER
*> This specifies the upper bandwidth of the matrix. KU=1
*> specifies lower Hessenberg form. If KU is at least N-1,
*> then A will have full upper bandwidth; if KU and KL
*> are both at least N-1, then A will be dense. Only one of
*> KU and KL may be less than N-1.
*> Not modified.
*> \endverbatim
*>
*> \param[in] ANORM
*> \verbatim
*> ANORM is REAL
*> If ANORM is not negative, then A will be scaled by a non-
*> negative real number to make the maximum-element-norm of A
*> to be ANORM.
*> Not modified.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX array, dimension ( LDA, N )
*> On exit A is the desired test matrix.
*> Modified.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> LDA specifies the first dimension of A as declared in the
*> calling program. LDA must be at least M.
*> Not modified.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension ( 3*N )
*> Workspace.
*> Modified.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> Error code. On exit, INFO will be set to one of the
*> following values:
*> 0 => normal return
*> -1 => N negative
*> -2 => DIST illegal string
*> -5 => MODE not in range -6 to 6
*> -6 => COND less than 1.0, and MODE neither -6, 0 nor 6
*> -9 => RSIGN is not 'T' or 'F'
*> -10 => UPPER is not 'T' or 'F'
*> -11 => SIM is not 'T' or 'F'
*> -12 => MODES=0 and DS has a zero singular value.
*> -13 => MODES is not in the range -5 to 5.
*> -14 => MODES is nonzero and CONDS is less than 1.
*> -15 => KL is less than 1.
*> -16 => KU is less than 1, or KL and KU are both less than
*> N-1.
*> -19 => LDA is less than M.
*> 1 => Error return from CLATM1 (computing D)
*> 2 => Cannot scale to DMAX (max. eigenvalue is 0)
*> 3 => Error return from SLATM1 (computing DS)
*> 4 => Error return from CLARGE
*> 5 => Zero singular value from SLATM1.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_matgen
*
* =====================================================================
SUBROUTINE CLATME( N, DIST, ISEED, D, MODE, COND, DMAX,
$ RSIGN,
$ UPPER, SIM, DS, MODES, CONDS, KL, KU, ANORM,
$ A,
$ LDA, WORK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER DIST, RSIGN, SIM, UPPER
INTEGER INFO, KL, KU, LDA, MODE, MODES, N
REAL ANORM, COND, CONDS
COMPLEX DMAX
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
REAL DS( * )
COMPLEX A( LDA, * ), D( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO
PARAMETER ( ZERO = 0.0E+0 )
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
COMPLEX CZERO
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ) )
COMPLEX CONE
PARAMETER ( CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
LOGICAL BADS
INTEGER I, IC, ICOLS, IDIST, IINFO, IR, IROWS, IRSIGN,
$ ISIM, IUPPER, J, JC, JCR
REAL RALPHA, TEMP
COMPLEX ALPHA, TAU, XNORMS
* ..
* .. Local Arrays ..
REAL TEMPA( 1 )
* ..
* .. External Functions ..
LOGICAL LSAME
REAL CLANGE
COMPLEX CLARND
EXTERNAL LSAME, CLANGE, CLARND
* ..
* .. External Subroutines ..
EXTERNAL CCOPY, CGEMV, CGERC, CLACGV, CLARFG, CLARGE,
$ CLARNV, CLATM1, CLASET, CSCAL, CSSCAL, SLATM1,
$ XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, CONJG, MAX, MOD
* ..
* .. Executable Statements ..
*
* 1) Decode and Test the input parameters.
* Initialize flags & seed.
*
INFO = 0
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Decode DIST
*
IF( LSAME( DIST, 'U' ) ) THEN
IDIST = 1
ELSE IF( LSAME( DIST, 'S' ) ) THEN
IDIST = 2
ELSE IF( LSAME( DIST, 'N' ) ) THEN
IDIST = 3
ELSE IF( LSAME( DIST, 'D' ) ) THEN
IDIST = 4
ELSE
IDIST = -1
END IF
*
* Decode RSIGN
*
IF( LSAME( RSIGN, 'T' ) ) THEN
IRSIGN = 1
ELSE IF( LSAME( RSIGN, 'F' ) ) THEN
IRSIGN = 0
ELSE
IRSIGN = -1
END IF
*
* Decode UPPER
*
IF( LSAME( UPPER, 'T' ) ) THEN
IUPPER = 1
ELSE IF( LSAME( UPPER, 'F' ) ) THEN
IUPPER = 0
ELSE
IUPPER = -1
END IF
*
* Decode SIM
*
IF( LSAME( SIM, 'T' ) ) THEN
ISIM = 1
ELSE IF( LSAME( SIM, 'F' ) ) THEN
ISIM = 0
ELSE
ISIM = -1
END IF
*
* Check DS, if MODES=0 and ISIM=1
*
BADS = .FALSE.
IF( MODES.EQ.0 .AND. ISIM.EQ.1 ) THEN
DO 10 J = 1, N
IF( DS( J ).EQ.ZERO )
$ BADS = .TRUE.
10 CONTINUE
END IF
*
* Set INFO if an error
*
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( IDIST.EQ.-1 ) THEN
INFO = -2
ELSE IF( ABS( MODE ).GT.6 ) THEN
INFO = -5
ELSE IF( ( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) .AND. COND.LT.ONE )
$ THEN
INFO = -6
ELSE IF( IRSIGN.EQ.-1 ) THEN
INFO = -9
ELSE IF( IUPPER.EQ.-1 ) THEN
INFO = -10
ELSE IF( ISIM.EQ.-1 ) THEN
INFO = -11
ELSE IF( BADS ) THEN
INFO = -12
ELSE IF( ISIM.EQ.1 .AND. ABS( MODES ).GT.5 ) THEN
INFO = -13
ELSE IF( ISIM.EQ.1 .AND. MODES.NE.0 .AND. CONDS.LT.ONE ) THEN
INFO = -14
ELSE IF( KL.LT.1 ) THEN
INFO = -15
ELSE IF( KU.LT.1 .OR. ( KU.LT.N-1 .AND. KL.LT.N-1 ) ) THEN
INFO = -16
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -19
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'CLATME', -INFO )
RETURN
END IF
*
* Initialize random number generator
*
DO 20 I = 1, 4
ISEED( I ) = MOD( ABS( ISEED( I ) ), 4096 )
20 CONTINUE
*
IF( MOD( ISEED( 4 ), 2 ).NE.1 )
$ ISEED( 4 ) = ISEED( 4 ) + 1
*
* 2) Set up diagonal of A
*
* Compute D according to COND and MODE
*
CALL CLATM1( MODE, COND, IRSIGN, IDIST, ISEED, D, N, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 1
RETURN
END IF
IF( MODE.NE.0 .AND. ABS( MODE ).NE.6 ) THEN
*
* Scale by DMAX
*
TEMP = ABS( D( 1 ) )
DO 30 I = 2, N
TEMP = MAX( TEMP, ABS( D( I ) ) )
30 CONTINUE
*
IF( TEMP.GT.ZERO ) THEN
ALPHA = DMAX / TEMP
ELSE
INFO = 2
RETURN
END IF
*
CALL CSCAL( N, ALPHA, D, 1 )
*
END IF
*
CALL CLASET( 'Full', N, N, CZERO, CZERO, A, LDA )
CALL CCOPY( N, D, 1, A, LDA+1 )
*
* 3) If UPPER='T', set upper triangle of A to random numbers.
*
IF( IUPPER.NE.0 ) THEN
DO 40 JC = 2, N
CALL CLARNV( IDIST, ISEED, JC-1, A( 1, JC ) )
40 CONTINUE
END IF
*
* 4) If SIM='T', apply similarity transformation.
*
* -1
* Transform is X A X , where X = U S V, thus
*
* it is U S V A V' (1/S) U'
*
IF( ISIM.NE.0 ) THEN
*
* Compute S (singular values of the eigenvector matrix)
* according to CONDS and MODES
*
CALL SLATM1( MODES, CONDS, 0, 0, ISEED, DS, N, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 3
RETURN
END IF
*
* Multiply by V and V'
*
CALL CLARGE( N, A, LDA, ISEED, WORK, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 4
RETURN
END IF
*
* Multiply by S and (1/S)
*
DO 50 J = 1, N
CALL CSSCAL( N, DS( J ), A( J, 1 ), LDA )
IF( DS( J ).NE.ZERO ) THEN
CALL CSSCAL( N, ONE / DS( J ), A( 1, J ), 1 )
ELSE
INFO = 5
RETURN
END IF
50 CONTINUE
*
* Multiply by U and U'
*
CALL CLARGE( N, A, LDA, ISEED, WORK, IINFO )
IF( IINFO.NE.0 ) THEN
INFO = 4
RETURN
END IF
END IF
*
* 5) Reduce the bandwidth.
*
IF( KL.LT.N-1 ) THEN
*
* Reduce bandwidth -- kill column
*
DO 60 JCR = KL + 1, N - 1
IC = JCR - KL
IROWS = N + 1 - JCR
ICOLS = N + KL - JCR
*
CALL CCOPY( IROWS, A( JCR, IC ), 1, WORK, 1 )
XNORMS = WORK( 1 )
CALL CLARFG( IROWS, XNORMS, WORK( 2 ), 1, TAU )
TAU = CONJG( TAU )
WORK( 1 ) = CONE
ALPHA = CLARND( 5, ISEED )
*
CALL CGEMV( 'C', IROWS, ICOLS, CONE, A( JCR, IC+1 ), LDA,
$ WORK, 1, CZERO, WORK( IROWS+1 ), 1 )
CALL CGERC( IROWS, ICOLS, -TAU, WORK, 1, WORK( IROWS+1 ), 1,
$ A( JCR, IC+1 ), LDA )
*
CALL CGEMV( 'N', N, IROWS, CONE, A( 1, JCR ), LDA, WORK, 1,
$ CZERO, WORK( IROWS+1 ), 1 )
CALL CGERC( N, IROWS, -CONJG( TAU ), WORK( IROWS+1 ), 1,
$ WORK, 1, A( 1, JCR ), LDA )
*
A( JCR, IC ) = XNORMS
CALL CLASET( 'Full', IROWS-1, 1, CZERO, CZERO,
$ A( JCR+1, IC ), LDA )
*
CALL CSCAL( ICOLS+1, ALPHA, A( JCR, IC ), LDA )
CALL CSCAL( N, CONJG( ALPHA ), A( 1, JCR ), 1 )
60 CONTINUE
ELSE IF( KU.LT.N-1 ) THEN
*
* Reduce upper bandwidth -- kill a row at a time.
*
DO 70 JCR = KU + 1, N - 1
IR = JCR - KU
IROWS = N + KU - JCR
ICOLS = N + 1 - JCR
*
CALL CCOPY( ICOLS, A( IR, JCR ), LDA, WORK, 1 )
XNORMS = WORK( 1 )
CALL CLARFG( ICOLS, XNORMS, WORK( 2 ), 1, TAU )
TAU = CONJG( TAU )
WORK( 1 ) = CONE
CALL CLACGV( ICOLS-1, WORK( 2 ), 1 )
ALPHA = CLARND( 5, ISEED )
*
CALL CGEMV( 'N', IROWS, ICOLS, CONE, A( IR+1, JCR ), LDA,
$ WORK, 1, CZERO, WORK( ICOLS+1 ), 1 )
CALL CGERC( IROWS, ICOLS, -TAU, WORK( ICOLS+1 ), 1, WORK, 1,
$ A( IR+1, JCR ), LDA )
*
CALL CGEMV( 'C', ICOLS, N, CONE, A( JCR, 1 ), LDA, WORK, 1,
$ CZERO, WORK( ICOLS+1 ), 1 )
CALL CGERC( ICOLS, N, -CONJG( TAU ), WORK, 1,
$ WORK( ICOLS+1 ), 1, A( JCR, 1 ), LDA )
*
A( IR, JCR ) = XNORMS
CALL CLASET( 'Full', 1, ICOLS-1, CZERO, CZERO,
$ A( IR, JCR+1 ), LDA )
*
CALL CSCAL( IROWS+1, ALPHA, A( IR, JCR ), 1 )
CALL CSCAL( N, CONJG( ALPHA ), A( JCR, 1 ), LDA )
70 CONTINUE
END IF
*
* Scale the matrix to have norm ANORM
*
IF( ANORM.GE.ZERO ) THEN
TEMP = CLANGE( 'M', N, N, A, LDA, TEMPA )
IF( TEMP.GT.ZERO ) THEN
RALPHA = ANORM / TEMP
DO 80 J = 1, N
CALL CSSCAL( N, RALPHA, A( 1, J ), 1 )
80 CONTINUE
END IF
END IF
*
RETURN
*
* End of CLATME
*
END
|