1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174
|
*> \brief \b DLARGE
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DLARGE( N, A, LDA, ISEED, WORK, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* DOUBLE PRECISION A( LDA, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLARGE pre- and post-multiplies a real general n by n matrix A
*> with a random orthogonal matrix: A = U*D*U'.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in,out] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> On entry, the original n by n matrix A.
*> On exit, A is overwritten by U*A*U' for some random
*> orthogonal matrix U.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= N.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry, the seed of the random number generator; the array
*> elements must be between 0 and 4095, and ISEED(4) must be
*> odd.
*> On exit, the seed is updated.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (2*N)
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0: successful exit
*> < 0: if INFO = -i, the i-th argument had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_matgen
*
* =====================================================================
SUBROUTINE DLARGE( N, A, LDA, ISEED, WORK, INFO )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, N
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 )
DOUBLE PRECISION A( LDA, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER I
DOUBLE PRECISION TAU, WA, WB, WN
* ..
* .. External Subroutines ..
EXTERNAL DGEMV, DGER, DLARNV, DSCAL, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, SIGN
* ..
* .. External Functions ..
DOUBLE PRECISION DNRM2
EXTERNAL DNRM2
* ..
* .. Executable Statements ..
*
* Test the input arguments
*
INFO = 0
IF( N.LT.0 ) THEN
INFO = -1
ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
INFO = -3
END IF
IF( INFO.LT.0 ) THEN
CALL XERBLA( 'DLARGE', -INFO )
RETURN
END IF
*
* pre- and post-multiply A by random orthogonal matrix
*
DO 10 I = N, 1, -1
*
* generate random reflection
*
CALL DLARNV( 3, ISEED, N-I+1, WORK )
WN = DNRM2( N-I+1, WORK, 1 )
WA = SIGN( WN, WORK( 1 ) )
IF( WN.EQ.ZERO ) THEN
TAU = ZERO
ELSE
WB = WORK( 1 ) + WA
CALL DSCAL( N-I, ONE / WB, WORK( 2 ), 1 )
WORK( 1 ) = ONE
TAU = WB / WA
END IF
*
* multiply A(i:n,1:n) by random reflection from the left
*
CALL DGEMV( 'Transpose', N-I+1, N, ONE, A( I, 1 ), LDA, WORK,
$ 1, ZERO, WORK( N+1 ), 1 )
CALL DGER( N-I+1, N, -TAU, WORK, 1, WORK( N+1 ), 1, A( I, 1 ),
$ LDA )
*
* multiply A(1:n,i:n) by random reflection from the right
*
CALL DGEMV( 'No transpose', N, N-I+1, ONE, A( 1, I ), LDA,
$ WORK, 1, ZERO, WORK( N+1 ), 1 )
CALL DGER( N, N-I+1, -TAU, WORK( N+1 ), 1, WORK, 1, A( 1, I ),
$ LDA )
10 CONTINUE
RETURN
*
* End of DLARGE
*
END
|