1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
*> \brief \b DLATM7
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DLATM7( MODE, COND, IRSIGN, IDIST, ISEED, D, N,
* RANK, INFO )
*
* .. Scalar Arguments ..
* DOUBLE PRECISION COND
* INTEGER IDIST, INFO, IRSIGN, MODE, N, RANK
* ..
* .. Array Arguments ..
* DOUBLE PRECISION D( * )
* INTEGER ISEED( 4 )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DLATM7 computes the entries of D as specified by MODE
*> COND and IRSIGN. IDIST and ISEED determine the generation
*> of random numbers. DLATM7 is called by DLATMT to generate
*> random test matrices.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \verbatim
*> MODE - INTEGER
*> On entry describes how D is to be computed:
*> MODE = 0 means do not change D.
*>
*> MODE = 1 sets D(1)=1 and D(2:RANK)=1.0/COND
*> MODE = 2 sets D(1:RANK-1)=1 and D(RANK)=1.0/COND
*> MODE = 3 sets D(I)=COND**(-(I-1)/(RANK-1)) I=1:RANK
*>
*> MODE = 4 sets D(i)=1 - (i-1)/(N-1)*(1 - 1/COND)
*> MODE = 5 sets D to random numbers in the range
*> ( 1/COND , 1 ) such that their logarithms
*> are uniformly distributed.
*> MODE = 6 set D to random numbers from same distribution
*> as the rest of the matrix.
*> MODE < 0 has the same meaning as ABS(MODE), except that
*> the order of the elements of D is reversed.
*> Thus if MODE is positive, D has entries ranging from
*> 1 to 1/COND, if negative, from 1/COND to 1,
*> Not modified.
*>
*> COND - DOUBLE PRECISION
*> On entry, used as described under MODE above.
*> If used, it must be >= 1. Not modified.
*>
*> IRSIGN - INTEGER
*> On entry, if MODE neither -6, 0 nor 6, determines sign of
*> entries of D
*> 0 => leave entries of D unchanged
*> 1 => multiply each entry of D by 1 or -1 with probability .5
*>
*> IDIST - CHARACTER*1
*> On entry, IDIST specifies the type of distribution to be
*> used to generate a random matrix .
*> 1 => UNIFORM( 0, 1 )
*> 2 => UNIFORM( -1, 1 )
*> 3 => NORMAL( 0, 1 )
*> Not modified.
*>
*> ISEED - INTEGER array, dimension ( 4 )
*> On entry ISEED specifies the seed of the random number
*> generator. The random number generator uses a
*> linear congruential sequence limited to small
*> integers, and so should produce machine independent
*> random numbers. The values of ISEED are changed on
*> exit, and can be used in the next call to DLATM7
*> to continue the same random number sequence.
*> Changed on exit.
*>
*> D - DOUBLE PRECISION array, dimension ( MIN( M , N ) )
*> Array to be computed according to MODE, COND and IRSIGN.
*> May be changed on exit if MODE is nonzero.
*>
*> N - INTEGER
*> Number of entries of D. Not modified.
*>
*> RANK - INTEGER
*> The rank of matrix to be generated for modes 1,2,3 only.
*> D( RANK+1:N ) = 0.
*> Not modified.
*>
*> INFO - INTEGER
*> 0 => normal termination
*> -1 => if MODE not in range -6 to 6
*> -2 => if MODE neither -6, 0 nor 6, and
*> IRSIGN neither 0 nor 1
*> -3 => if MODE neither -6, 0 nor 6 and COND less than 1
*> -4 => if MODE equals 6 or -6 and IDIST not in range 1 to 3
*> -7 => if N negative
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_matgen
*
* =====================================================================
SUBROUTINE DLATM7( MODE, COND, IRSIGN, IDIST, ISEED, D, N,
$ RANK, INFO )
*
* -- LAPACK computational routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
DOUBLE PRECISION COND
INTEGER IDIST, INFO, IRSIGN, MODE, N, RANK
* ..
* .. Array Arguments ..
DOUBLE PRECISION D( * )
INTEGER ISEED( 4 )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE
PARAMETER ( ONE = 1.0D0 )
DOUBLE PRECISION ZERO
PARAMETER ( ZERO = 0.0D0 )
DOUBLE PRECISION HALF
PARAMETER ( HALF = 0.5D0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION ALPHA, TEMP
INTEGER I
* ..
* .. External Functions ..
DOUBLE PRECISION DLARAN
EXTERNAL DLARAN
* ..
* .. External Subroutines ..
EXTERNAL DLARNV, XERBLA
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, EXP, LOG
* ..
* .. Executable Statements ..
*
* Decode and Test the input parameters. Initialize flags & seed.
*
INFO = 0
*
* Quick return if possible
*
IF( N.EQ.0 )
$ RETURN
*
* Set INFO if an error
*
IF( MODE.LT.-6 .OR. MODE.GT.6 ) THEN
INFO = -1
ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
$ ( IRSIGN.NE.0 .AND. IRSIGN.NE.1 ) ) THEN
INFO = -2
ELSE IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
$ COND.LT.ONE ) THEN
INFO = -3
ELSE IF( ( MODE.EQ.6 .OR. MODE.EQ.-6 ) .AND.
$ ( IDIST.LT.1 .OR. IDIST.GT.3 ) ) THEN
INFO = -4
ELSE IF( N.LT.0 ) THEN
INFO = -7
END IF
*
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DLATM7', -INFO )
RETURN
END IF
*
* Compute D according to COND and MODE
*
IF( MODE.NE.0 ) THEN
GO TO ( 100, 130, 160, 190, 210, 230 )ABS( MODE )
*
* One large D value:
*
100 CONTINUE
DO 110 I = 2, RANK
D( I ) = ONE / COND
110 CONTINUE
DO 120 I = RANK + 1, N
D( I ) = ZERO
120 CONTINUE
D( 1 ) = ONE
GO TO 240
*
* One small D value:
*
130 CONTINUE
DO 140 I = 1, RANK - 1
D( I ) = ONE
140 CONTINUE
DO 150 I = RANK + 1, N
D( I ) = ZERO
150 CONTINUE
D( RANK ) = ONE / COND
GO TO 240
*
* Exponentially distributed D values:
*
160 CONTINUE
D( 1 ) = ONE
IF( N.GT.1 .AND. RANK.GT.1 ) THEN
ALPHA = COND**( -ONE / DBLE( RANK-1 ) )
DO 170 I = 2, RANK
D( I ) = ALPHA**( I-1 )
170 CONTINUE
DO 180 I = RANK + 1, N
D( I ) = ZERO
180 CONTINUE
END IF
GO TO 240
*
* Arithmetically distributed D values:
*
190 CONTINUE
D( 1 ) = ONE
IF( N.GT.1 ) THEN
TEMP = ONE / COND
ALPHA = ( ONE-TEMP ) / DBLE( N-1 )
DO 200 I = 2, N
D( I ) = DBLE( N-I )*ALPHA + TEMP
200 CONTINUE
END IF
GO TO 240
*
* Randomly distributed D values on ( 1/COND , 1):
*
210 CONTINUE
ALPHA = LOG( ONE / COND )
DO 220 I = 1, N
D( I ) = EXP( ALPHA*DLARAN( ISEED ) )
220 CONTINUE
GO TO 240
*
* Randomly distributed D values from IDIST
*
230 CONTINUE
CALL DLARNV( IDIST, ISEED, N, D )
*
240 CONTINUE
*
* If MODE neither -6 nor 0 nor 6, and IRSIGN = 1, assign
* random signs to D
*
IF( ( MODE.NE.-6 .AND. MODE.NE.0 .AND. MODE.NE.6 ) .AND.
$ IRSIGN.EQ.1 ) THEN
DO 250 I = 1, N
TEMP = DLARAN( ISEED )
IF( TEMP.GT.HALF )
$ D( I ) = -D( I )
250 CONTINUE
END IF
*
* Reverse if MODE < 0
*
IF( MODE.LT.0 ) THEN
DO 260 I = 1, N / 2
TEMP = D( I )
D( I ) = D( N+1-I )
D( N+1-I ) = TEMP
260 CONTINUE
END IF
*
END IF
*
RETURN
*
* End of DLATM7
*
END
|