1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
*> \brief \b SLARAN
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* REAL FUNCTION SLARAN( ISEED )
*
* .. Array Arguments ..
* INTEGER ISEED( 4 )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> SLARAN returns a random real number from a uniform (0,1)
*> distribution.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry, the seed of the random number generator; the array
*> elements must be between 0 and 4095, and ISEED(4) must be
*> odd.
*> On exit, the seed is updated.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup real_matgen
*
*> \par Further Details:
* =====================
*>
*> \verbatim
*>
*> This routine uses a multiplicative congruential method with modulus
*> 2**48 and multiplier 33952834046453 (see G.S.Fishman,
*> 'Multiplicative congruential random number generators with modulus
*> 2**b: an exhaustive analysis for b = 32 and a partial analysis for
*> b = 48', Math. Comp. 189, pp 331-344, 1990).
*>
*> 48-bit integers are stored in 4 integer array elements with 12 bits
*> per element. Hence the routine is portable across machines with
*> integers of 32 bits or more.
*> \endverbatim
*>
* =====================================================================
REAL FUNCTION SLARAN( ISEED )
*
* -- LAPACK auxiliary routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Array Arguments ..
INTEGER ISEED( 4 )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER M1, M2, M3, M4
PARAMETER ( M1 = 494, M2 = 322, M3 = 2508, M4 = 2549 )
REAL ONE
PARAMETER ( ONE = 1.0E+0 )
INTEGER IPW2
REAL R
PARAMETER ( IPW2 = 4096, R = ONE / IPW2 )
* ..
* .. Local Scalars ..
INTEGER IT1, IT2, IT3, IT4
REAL RNDOUT
* ..
* .. Intrinsic Functions ..
INTRINSIC MOD, REAL
* ..
* .. Executable Statements ..
10 CONTINUE
*
* multiply the seed by the multiplier modulo 2**48
*
IT4 = ISEED( 4 )*M4
IT3 = IT4 / IPW2
IT4 = IT4 - IPW2*IT3
IT3 = IT3 + ISEED( 3 )*M4 + ISEED( 4 )*M3
IT2 = IT3 / IPW2
IT3 = IT3 - IPW2*IT2
IT2 = IT2 + ISEED( 2 )*M4 + ISEED( 3 )*M3 + ISEED( 4 )*M2
IT1 = IT2 / IPW2
IT2 = IT2 - IPW2*IT1
IT1 = IT1 + ISEED( 1 )*M4 + ISEED( 2 )*M3 + ISEED( 3 )*M2 +
$ ISEED( 4 )*M1
IT1 = MOD( IT1, IPW2 )
*
* return updated seed
*
ISEED( 1 ) = IT1
ISEED( 2 ) = IT2
ISEED( 3 ) = IT3
ISEED( 4 ) = IT4
*
* convert 48-bit integer to a real number in the interval (0,1)
*
RNDOUT = R*( REAL( IT1 )+R*( REAL( IT2 )+R*( REAL( IT3 )+R*
$ ( REAL( IT4 ) ) ) ) )
*
IF (RNDOUT.EQ.1.0) THEN
* If a real number has n bits of precision, and the first
* n bits of the 48-bit integer above happen to be all 1 (which
* will occur about once every 2**n calls), then SLARAN will
* be rounded to exactly 1.0. In IEEE single precision arithmetic,
* this will happen relatively often since n = 24.
* Since SLARAN is not supposed to return exactly 0.0 or 1.0
* (and some callers of SLARAN, such as CLARND, depend on that),
* the statistically correct thing to do in this situation is
* simply to iterate again.
* N.B. the case SLARAN = 0.0 should not be possible.
*
GOTO 10
END IF
*
SLARAN = RNDOUT
RETURN
*
* End of SLARAN
*
END
|