1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
|
*> \brief \b CBDT01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
* RWORK, RESID )
*
* .. Scalar Arguments ..
* INTEGER KD, LDA, LDPT, LDQ, M, N
* REAL RESID
* ..
* .. Array Arguments ..
* REAL D( * ), E( * ), RWORK( * )
* COMPLEX A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ),
* $ WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CBDT01 reconstructs a general matrix A from its bidiagonal form
*> A = Q * B * P'
*> where Q (m by min(m,n)) and P' (min(m,n) by n) are unitary
*> matrices and B is bidiagonal.
*>
*> The test ratio to test the reduction is
*> RESID = norm( A - Q * B * PT ) / ( n * norm(A) * EPS )
*> where PT = P' and EPS is the machine precision.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of rows of the matrices A and Q.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of columns of the matrices A and P'.
*> \endverbatim
*>
*> \param[in] KD
*> \verbatim
*> KD is INTEGER
*> If KD = 0, B is diagonal and the array E is not referenced.
*> If KD = 1, the reduction was performed by xGEBRD; B is upper
*> bidiagonal if M >= N, and lower bidiagonal if M < N.
*> If KD = -1, the reduction was performed by xGBBRD; B is
*> always upper bidiagonal.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA,N)
*> The m by n matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,M).
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*> Q is COMPLEX array, dimension (LDQ,N)
*> The m by min(m,n) unitary matrix Q in the reduction
*> A = Q * B * P'.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q. LDQ >= max(1,M).
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is REAL array, dimension (min(M,N))
*> The diagonal elements of the bidiagonal matrix B.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is REAL array, dimension (min(M,N)-1)
*> The superdiagonal elements of the bidiagonal matrix B if
*> m >= n, or the subdiagonal elements of B if m < n.
*> \endverbatim
*>
*> \param[in] PT
*> \verbatim
*> PT is COMPLEX array, dimension (LDPT,N)
*> The min(m,n) by n unitary matrix P' in the reduction
*> A = Q * B * P'.
*> \endverbatim
*>
*> \param[in] LDPT
*> \verbatim
*> LDPT is INTEGER
*> The leading dimension of the array PT.
*> LDPT >= max(1,min(M,N)).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (M+N)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*> RESID is REAL
*> The test ratio: norm(A - Q * B * P') / ( n * norm(A) * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CBDT01( M, N, KD, A, LDA, Q, LDQ, D, E, PT, LDPT, WORK,
$ RWORK, RESID )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER KD, LDA, LDPT, LDQ, M, N
REAL RESID
* ..
* .. Array Arguments ..
REAL D( * ), E( * ), RWORK( * )
COMPLEX A( LDA, * ), PT( LDPT, * ), Q( LDQ, * ),
$ WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
* ..
* .. Local Scalars ..
INTEGER I, J
REAL ANORM, EPS
* ..
* .. External Functions ..
REAL CLANGE, SCASUM, SLAMCH
EXTERNAL CLANGE, SCASUM, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CCOPY, CGEMV
* ..
* .. Intrinsic Functions ..
INTRINSIC CMPLX, MAX, MIN, REAL
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( M.LE.0 .OR. N.LE.0 ) THEN
RESID = ZERO
RETURN
END IF
*
* Compute A - Q * B * P' one column at a time.
*
RESID = ZERO
IF( KD.NE.0 ) THEN
*
* B is bidiagonal.
*
IF( KD.NE.0 .AND. M.GE.N ) THEN
*
* B is upper bidiagonal and M >= N.
*
DO 20 J = 1, N
CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
DO 10 I = 1, N - 1
WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
10 CONTINUE
WORK( M+N ) = D( N )*PT( N, J )
CALL CGEMV( 'No transpose', M, N, -CMPLX( ONE ), Q, LDQ,
$ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
20 CONTINUE
ELSE IF( KD.LT.0 ) THEN
*
* B is upper bidiagonal and M < N.
*
DO 40 J = 1, N
CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
DO 30 I = 1, M - 1
WORK( M+I ) = D( I )*PT( I, J ) + E( I )*PT( I+1, J )
30 CONTINUE
WORK( M+M ) = D( M )*PT( M, J )
CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), Q, LDQ,
$ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
40 CONTINUE
ELSE
*
* B is lower bidiagonal.
*
DO 60 J = 1, N
CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
WORK( M+1 ) = D( 1 )*PT( 1, J )
DO 50 I = 2, M
WORK( M+I ) = E( I-1 )*PT( I-1, J ) +
$ D( I )*PT( I, J )
50 CONTINUE
CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), Q, LDQ,
$ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
60 CONTINUE
END IF
ELSE
*
* B is diagonal.
*
IF( M.GE.N ) THEN
DO 80 J = 1, N
CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
DO 70 I = 1, N
WORK( M+I ) = D( I )*PT( I, J )
70 CONTINUE
CALL CGEMV( 'No transpose', M, N, -CMPLX( ONE ), Q, LDQ,
$ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
80 CONTINUE
ELSE
DO 100 J = 1, N
CALL CCOPY( M, A( 1, J ), 1, WORK, 1 )
DO 90 I = 1, M
WORK( M+I ) = D( I )*PT( I, J )
90 CONTINUE
CALL CGEMV( 'No transpose', M, M, -CMPLX( ONE ), Q, LDQ,
$ WORK( M+1 ), 1, CMPLX( ONE ), WORK, 1 )
RESID = MAX( RESID, SCASUM( M, WORK, 1 ) )
100 CONTINUE
END IF
END IF
*
* Compute norm(A - Q * B * P') / ( n * norm(A) * EPS )
*
ANORM = CLANGE( '1', M, N, A, LDA, RWORK )
EPS = SLAMCH( 'Precision' )
*
IF( ANORM.LE.ZERO ) THEN
IF( RESID.NE.ZERO )
$ RESID = ONE / EPS
ELSE
IF( ANORM.GE.RESID ) THEN
RESID = ( RESID / ANORM ) / ( REAL( N )*EPS )
ELSE
IF( ANORM.LT.ONE ) THEN
RESID = ( MIN( RESID, REAL( N )*ANORM ) / ANORM ) /
$ ( REAL( N )*EPS )
ELSE
RESID = MIN( RESID / ANORM, REAL( N ) ) /
$ ( REAL( N )*EPS )
END IF
END IF
END IF
*
RETURN
*
* End of CBDT01
*
END
|