1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325
|
*> \brief \b CCKGLM
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CCKGLM( NN, NVAL, MVAL, PVAL, NMATS, ISEED, THRESH,
* NMAX, A, AF, B, BF, X, WORK, RWORK, NIN, NOUT,
* INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, NIN, NMATS, NMAX, NN, NOUT
* REAL THRESH
* ..
* .. Array Arguments ..
* INTEGER ISEED( 4 ), MVAL( * ), NVAL( * ), PVAL( * )
* REAL RWORK( * )
* COMPLEX A( * ), AF( * ), B( * ), BF( * ), WORK( * ),
* $ X( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CCKGLM tests CGGGLM - subroutine for solving generalized linear
*> model problem.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] NN
*> \verbatim
*> NN is INTEGER
*> The number of values of N, M and P contained in the vectors
*> NVAL, MVAL and PVAL.
*> \endverbatim
*>
*> \param[in] NVAL
*> \verbatim
*> NVAL is INTEGER array, dimension (NN)
*> The values of the matrix row dimension N.
*> \endverbatim
*>
*> \param[in] MVAL
*> \verbatim
*> MVAL is INTEGER array, dimension (NN)
*> The values of the matrix column dimension M.
*> \endverbatim
*>
*> \param[in] PVAL
*> \verbatim
*> PVAL is INTEGER array, dimension (NN)
*> The values of the matrix column dimension P.
*> \endverbatim
*>
*> \param[in] NMATS
*> \verbatim
*> NMATS is INTEGER
*> The number of matrix types to be tested for each combination
*> of matrix dimensions. If NMATS >= NTYPES (the maximum
*> number of matrix types), then all the different types are
*> generated for testing. If NMATS < NTYPES, another input line
*> is read to get the numbers of the matrix types to be used.
*> \endverbatim
*>
*> \param[in,out] ISEED
*> \verbatim
*> ISEED is INTEGER array, dimension (4)
*> On entry, the seed of the random number generator. The array
*> elements should be between 0 and 4095, otherwise they will be
*> reduced mod 4096, and ISEED(4) must be odd.
*> On exit, the next seed in the random number sequence after
*> all the test matrices have been generated.
*> \endverbatim
*>
*> \param[in] THRESH
*> \verbatim
*> THRESH is REAL
*> The threshold value for the test ratios. A result is
*> included in the output file if RESID >= THRESH. To have
*> every test ratio printed, use THRESH = 0.
*> \endverbatim
*>
*> \param[in] NMAX
*> \verbatim
*> NMAX is INTEGER
*> The maximum value permitted for M or N, used in dimensioning
*> the work arrays.
*> \endverbatim
*>
*> \param[out] A
*> \verbatim
*> A is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*> AF is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] B
*> \verbatim
*> B is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] BF
*> \verbatim
*> BF is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is COMPLEX array, dimension (4*NMAX)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (NMAX)
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (NMAX*NMAX)
*> \endverbatim
*>
*> \param[in] NIN
*> \verbatim
*> NIN is INTEGER
*> The unit number for input.
*> \endverbatim
*>
*> \param[in] NOUT
*> \verbatim
*> NOUT is INTEGER
*> The unit number for output.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> = 0 : successful exit
*> > 0 : If CLATMS returns an error code, the absolute value
*> of it is returned.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CCKGLM( NN, NVAL, MVAL, PVAL, NMATS, ISEED, THRESH,
$ NMAX, A, AF, B, BF, X, WORK, RWORK, NIN, NOUT,
$ INFO )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, NIN, NMATS, NMAX, NN, NOUT
REAL THRESH
* ..
* .. Array Arguments ..
INTEGER ISEED( 4 ), MVAL( * ), NVAL( * ), PVAL( * )
REAL RWORK( * )
COMPLEX A( * ), AF( * ), B( * ), BF( * ), WORK( * ),
$ X( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
INTEGER NTYPES
PARAMETER ( NTYPES = 8 )
* ..
* .. Local Scalars ..
LOGICAL FIRSTT
CHARACTER DISTA, DISTB, TYPE
CHARACTER*3 PATH
INTEGER I, IINFO, IK, IMAT, KLA, KLB, KUA, KUB, LDA,
$ LDB, LWORK, M, MODEA, MODEB, N, NFAIL, NRUN, P
REAL ANORM, BNORM, CNDNMA, CNDNMB, RESID
* ..
* .. Local Arrays ..
LOGICAL DOTYPE( NTYPES )
* ..
* .. External Functions ..
COMPLEX CLARND
EXTERNAL CLARND
* ..
* .. External Subroutines ..
EXTERNAL ALAHDG, ALAREQ, ALASUM, CGLMTS, CLATMS, SLATB9
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS
* ..
* .. Executable Statements ..
*
* Initialize constants.
*
PATH( 1: 3 ) = 'GLM'
INFO = 0
NRUN = 0
NFAIL = 0
FIRSTT = .TRUE.
CALL ALAREQ( PATH, NMATS, DOTYPE, NTYPES, NIN, NOUT )
LDA = NMAX
LDB = NMAX
LWORK = NMAX*NMAX
*
* Check for valid input values.
*
DO 10 IK = 1, NN
M = MVAL( IK )
P = PVAL( IK )
N = NVAL( IK )
IF( M.GT.N .OR. N.GT.M+P ) THEN
IF( FIRSTT ) THEN
WRITE( NOUT, FMT = * )
FIRSTT = .FALSE.
END IF
WRITE( NOUT, FMT = 9997 )M, P, N
END IF
10 CONTINUE
FIRSTT = .TRUE.
*
* Do for each value of M in MVAL.
*
DO 40 IK = 1, NN
M = MVAL( IK )
P = PVAL( IK )
N = NVAL( IK )
IF( M.GT.N .OR. N.GT.M+P )
$ GO TO 40
*
DO 30 IMAT = 1, NTYPES
*
* Do the tests only if DOTYPE( IMAT ) is true.
*
IF( .NOT.DOTYPE( IMAT ) )
$ GO TO 30
*
* Set up parameters with SLATB9 and generate test
* matrices A and B with CLATMS.
*
CALL SLATB9( PATH, IMAT, M, P, N, TYPE, KLA, KUA, KLB, KUB,
$ ANORM, BNORM, MODEA, MODEB, CNDNMA, CNDNMB,
$ DISTA, DISTB )
*
CALL CLATMS( N, M, DISTA, ISEED, TYPE, RWORK, MODEA, CNDNMA,
$ ANORM, KLA, KUA, 'No packing', A, LDA, WORK,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9999 )IINFO
INFO = ABS( IINFO )
GO TO 30
END IF
*
CALL CLATMS( N, P, DISTB, ISEED, TYPE, RWORK, MODEB, CNDNMB,
$ BNORM, KLB, KUB, 'No packing', B, LDB, WORK,
$ IINFO )
IF( IINFO.NE.0 ) THEN
WRITE( NOUT, FMT = 9999 )IINFO
INFO = ABS( IINFO )
GO TO 30
END IF
*
* Generate random left hand side vector of GLM
*
DO 20 I = 1, N
X( I ) = CLARND( 2, ISEED )
20 CONTINUE
*
CALL CGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, X,
$ X( NMAX+1 ), X( 2*NMAX+1 ), X( 3*NMAX+1 ),
$ WORK, LWORK, RWORK, RESID )
*
* Print information about the tests that did not
* pass the threshold.
*
IF( RESID.GE.THRESH ) THEN
IF( NFAIL.EQ.0 .AND. FIRSTT ) THEN
FIRSTT = .FALSE.
CALL ALAHDG( NOUT, PATH )
END IF
WRITE( NOUT, FMT = 9998 )N, M, P, IMAT, 1, RESID
NFAIL = NFAIL + 1
END IF
NRUN = NRUN + 1
*
30 CONTINUE
40 CONTINUE
*
* Print a summary of the results.
*
CALL ALASUM( PATH, NOUT, NFAIL, NRUN, 0 )
*
9999 FORMAT( ' CLATMS in CCKGLM INFO = ', I5 )
9998 FORMAT( ' N=', I4, ' M=', I4, ', P=', I4, ', type ', I2,
$ ', test ', I2, ', ratio=', G13.6 )
9997 FORMAT( ' *** Invalid input for GLM: M = ', I6, ', P = ', I6,
$ ', N = ', I6, ';', / ' must satisfy M <= N <= M+P ',
$ '(this set of values will be skipped)' )
RETURN
*
* End of CCKGLM
*
END
|