1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291
|
*> \brief \b CGET52
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE CGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
* WORK, RWORK, RESULT )
*
* .. Scalar Arguments ..
* LOGICAL LEFT
* INTEGER LDA, LDB, LDE, N
* ..
* .. Array Arguments ..
* REAL RESULT( 2 ), RWORK( * )
* COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
* $ BETA( * ), E( LDE, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> CGET52 does an eigenvector check for the generalized eigenvalue
*> problem.
*>
*> The basic test for right eigenvectors is:
*>
*> | b(i) A E(i) - a(i) B E(i) |
*> RESULT(1) = max -------------------------------
*> i n ulp max( |b(i) A|, |a(i) B| )
*>
*> using the 1-norm. Here, a(i)/b(i) = w is the i-th generalized
*> eigenvalue of A - w B, or, equivalently, b(i)/a(i) = m is the i-th
*> generalized eigenvalue of m A - B.
*>
*> H H _ _
*> For left eigenvectors, A , B , a, and b are used.
*>
*> CGET52 also tests the normalization of E. Each eigenvector is
*> supposed to be normalized so that the maximum "absolute value"
*> of its elements is 1, where in this case, "absolute value"
*> of a complex value x is |Re(x)| + |Im(x)| ; let us call this
*> maximum "absolute value" norm of a vector v M(v).
*> if a(i)=b(i)=0, then the eigenvector is set to be the jth coordinate
*> vector. The normalization test is:
*>
*> RESULT(2) = max | M(v(i)) - 1 | / ( n ulp )
*> eigenvectors v(i)
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] LEFT
*> \verbatim
*> LEFT is LOGICAL
*> =.TRUE.: The eigenvectors in the columns of E are assumed
*> to be *left* eigenvectors.
*> =.FALSE.: The eigenvectors in the columns of E are assumed
*> to be *right* eigenvectors.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The size of the matrices. If it is zero, CGET52 does
*> nothing. It must be at least zero.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is COMPLEX array, dimension (LDA, N)
*> The matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A. It must be at least 1
*> and at least N.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is COMPLEX array, dimension (LDB, N)
*> The matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B. It must be at least 1
*> and at least N.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is COMPLEX array, dimension (LDE, N)
*> The matrix of eigenvectors. It must be O( 1 ).
*> \endverbatim
*>
*> \param[in] LDE
*> \verbatim
*> LDE is INTEGER
*> The leading dimension of E. It must be at least 1 and at
*> least N.
*> \endverbatim
*>
*> \param[in] ALPHA
*> \verbatim
*> ALPHA is COMPLEX array, dimension (N)
*> The values a(i) as described above, which, along with b(i),
*> define the generalized eigenvalues.
*> \endverbatim
*>
*> \param[in] BETA
*> \verbatim
*> BETA is COMPLEX array, dimension (N)
*> The values b(i) as described above, which, along with a(i),
*> define the generalized eigenvalues.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is COMPLEX array, dimension (N**2)
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is REAL array, dimension (N)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is REAL array, dimension (2)
*> The values computed by the test described above. If A E or
*> B E is likely to overflow, then RESULT(1:2) is set to
*> 10 / ulp.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup complex_eig
*
* =====================================================================
SUBROUTINE CGET52( LEFT, N, A, LDA, B, LDB, E, LDE, ALPHA, BETA,
$ WORK, RWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
LOGICAL LEFT
INTEGER LDA, LDB, LDE, N
* ..
* .. Array Arguments ..
REAL RESULT( 2 ), RWORK( * )
COMPLEX A( LDA, * ), ALPHA( * ), B( LDB, * ),
$ BETA( * ), E( LDE, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
REAL ZERO, ONE
PARAMETER ( ZERO = 0.0E+0, ONE = 1.0E+0 )
COMPLEX CZERO, CONE
PARAMETER ( CZERO = ( 0.0E+0, 0.0E+0 ),
$ CONE = ( 1.0E+0, 0.0E+0 ) )
* ..
* .. Local Scalars ..
CHARACTER NORMAB, TRANS
INTEGER J, JVEC
REAL ABMAX, ALFMAX, ANORM, BETMAX, BNORM, ENORM,
$ ENRMER, ERRNRM, SAFMAX, SAFMIN, SCALE, TEMP1,
$ ULP
COMPLEX ACOEFF, ALPHAI, BCOEFF, BETAI, X
* ..
* .. External Functions ..
REAL CLANGE, SLAMCH
EXTERNAL CLANGE, SLAMCH
* ..
* .. External Subroutines ..
EXTERNAL CGEMV
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, AIMAG, CONJG, MAX, REAL
* ..
* .. Statement Functions ..
REAL ABS1
* ..
* .. Statement Function definitions ..
ABS1( X ) = ABS( REAL( X ) ) + ABS( AIMAG( X ) )
* ..
* .. Executable Statements ..
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 )
$ RETURN
*
SAFMIN = SLAMCH( 'Safe minimum' )
SAFMAX = ONE / SAFMIN
ULP = SLAMCH( 'Epsilon' )*SLAMCH( 'Base' )
*
IF( LEFT ) THEN
TRANS = 'C'
NORMAB = 'I'
ELSE
TRANS = 'N'
NORMAB = 'O'
END IF
*
* Norm of A, B, and E:
*
ANORM = MAX( CLANGE( NORMAB, N, N, A, LDA, RWORK ), SAFMIN )
BNORM = MAX( CLANGE( NORMAB, N, N, B, LDB, RWORK ), SAFMIN )
ENORM = MAX( CLANGE( 'O', N, N, E, LDE, RWORK ), ULP )
ALFMAX = SAFMAX / MAX( ONE, BNORM )
BETMAX = SAFMAX / MAX( ONE, ANORM )
*
* Compute error matrix.
* Column i = ( b(i) A - a(i) B ) E(i) / max( |a(i) B| |b(i) A| )
*
DO 10 JVEC = 1, N
ALPHAI = ALPHA( JVEC )
BETAI = BETA( JVEC )
ABMAX = MAX( ABS1( ALPHAI ), ABS1( BETAI ) )
IF( ABS1( ALPHAI ).GT.ALFMAX .OR. ABS1( BETAI ).GT.BETMAX .OR.
$ ABMAX.LT.ONE ) THEN
SCALE = ONE / MAX( ABMAX, SAFMIN )
ALPHAI = SCALE*ALPHAI
BETAI = SCALE*BETAI
END IF
SCALE = ONE / MAX( ABS1( ALPHAI )*BNORM, ABS1( BETAI )*ANORM,
$ SAFMIN )
ACOEFF = SCALE*BETAI
BCOEFF = SCALE*ALPHAI
IF( LEFT ) THEN
ACOEFF = CONJG( ACOEFF )
BCOEFF = CONJG( BCOEFF )
END IF
CALL CGEMV( TRANS, N, N, ACOEFF, A, LDA, E( 1, JVEC ), 1,
$ CZERO, WORK( N*( JVEC-1 )+1 ), 1 )
CALL CGEMV( TRANS, N, N, -BCOEFF, B, LDA, E( 1, JVEC ), 1,
$ CONE, WORK( N*( JVEC-1 )+1 ), 1 )
10 CONTINUE
*
ERRNRM = CLANGE( 'One', N, N, WORK, N, RWORK ) / ENORM
*
* Compute RESULT(1)
*
RESULT( 1 ) = ERRNRM / ULP
*
* Normalization of E:
*
ENRMER = ZERO
DO 30 JVEC = 1, N
TEMP1 = ZERO
DO 20 J = 1, N
TEMP1 = MAX( TEMP1, ABS1( E( J, JVEC ) ) )
20 CONTINUE
ENRMER = MAX( ENRMER, TEMP1-ONE )
30 CONTINUE
*
* Compute RESULT(2) : the normalization error in E.
*
RESULT( 2 ) = ENRMER / ( REAL( N )*ULP )
*
RETURN
*
* End of CGET52
*
END
|