File: dbdt02.f

package info (click to toggle)
lapack 3.4.1%2Bdfsg-1%2Bdeb70u1
  • links: PTS, VCS
  • area: main
  • in suites: wheezy
  • size: 103,172 kB
  • sloc: fortran: 469,422; ansic: 127,041; makefile: 3,817; python: 267; sh: 94
file content (190 lines) | stat: -rw-r--r-- 4,869 bytes parent folder | download | duplicates (12)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
*> \brief \b DBDT02
*
*  =========== DOCUMENTATION ===========
*
* Online html documentation available at 
*            http://www.netlib.org/lapack/explore-html/ 
*
*  Definition:
*  ===========
*
*       SUBROUTINE DBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RESID )
* 
*       .. Scalar Arguments ..
*       INTEGER            LDB, LDC, LDU, M, N
*       DOUBLE PRECISION   RESID
*       ..
*       .. Array Arguments ..
*       DOUBLE PRECISION   B( LDB, * ), C( LDC, * ), U( LDU, * ),
*      $                   WORK( * )
*       ..
*  
*
*> \par Purpose:
*  =============
*>
*> \verbatim
*>
*> DBDT02 tests the change of basis C = U' * B by computing the residual
*>
*>    RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
*>
*> where B and C are M by N matrices, U is an M by M orthogonal matrix,
*> and EPS is the machine precision.
*> \endverbatim
*
*  Arguments:
*  ==========
*
*> \param[in] M
*> \verbatim
*>          M is INTEGER
*>          The number of rows of the matrices B and C and the order of
*>          the matrix Q.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*>          N is INTEGER
*>          The number of columns of the matrices B and C.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*>          B is DOUBLE PRECISION array, dimension (LDB,N)
*>          The m by n matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*>          LDB is INTEGER
*>          The leading dimension of the array B.  LDB >= max(1,M).
*> \endverbatim
*>
*> \param[in] C
*> \verbatim
*>          C is DOUBLE PRECISION array, dimension (LDC,N)
*>          The m by n matrix C, assumed to contain U' * B.
*> \endverbatim
*>
*> \param[in] LDC
*> \verbatim
*>          LDC is INTEGER
*>          The leading dimension of the array C.  LDC >= max(1,M).
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*>          U is DOUBLE PRECISION array, dimension (LDU,M)
*>          The m by m orthogonal matrix U.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*>          LDU is INTEGER
*>          The leading dimension of the array U.  LDU >= max(1,M).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*>          WORK is DOUBLE PRECISION array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESID
*> \verbatim
*>          RESID is DOUBLE PRECISION
*>          RESID = norm( B - U * C ) / ( max(m,n) * norm(B) * EPS ),
*> \endverbatim
*
*  Authors:
*  ========
*
*> \author Univ. of Tennessee 
*> \author Univ. of California Berkeley 
*> \author Univ. of Colorado Denver 
*> \author NAG Ltd. 
*
*> \date November 2011
*
*> \ingroup double_eig
*
*  =====================================================================
      SUBROUTINE DBDT02( M, N, B, LDB, C, LDC, U, LDU, WORK, RESID )
*
*  -- LAPACK test routine (version 3.4.0) --
*  -- LAPACK is a software package provided by Univ. of Tennessee,    --
*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
*     November 2011
*
*     .. Scalar Arguments ..
      INTEGER            LDB, LDC, LDU, M, N
      DOUBLE PRECISION   RESID
*     ..
*     .. Array Arguments ..
      DOUBLE PRECISION   B( LDB, * ), C( LDC, * ), U( LDU, * ),
     $                   WORK( * )
*     ..
*
* ======================================================================
*
*     .. Parameters ..
      DOUBLE PRECISION   ZERO, ONE
      PARAMETER          ( ZERO = 0.0D+0, ONE = 1.0D+0 )
*     ..
*     .. Local Scalars ..
      INTEGER            J
      DOUBLE PRECISION   BNORM, EPS, REALMN
*     ..
*     .. External Functions ..
      DOUBLE PRECISION   DASUM, DLAMCH, DLANGE
      EXTERNAL           DASUM, DLAMCH, DLANGE
*     ..
*     .. External Subroutines ..
      EXTERNAL           DCOPY, DGEMV
*     ..
*     .. Intrinsic Functions ..
      INTRINSIC          DBLE, MAX, MIN
*     ..
*     .. Executable Statements ..
*
*     Quick return if possible
*
      RESID = ZERO
      IF( M.LE.0 .OR. N.LE.0 )
     $   RETURN
      REALMN = DBLE( MAX( M, N ) )
      EPS = DLAMCH( 'Precision' )
*
*     Compute norm( B - U * C )
*
      DO 10 J = 1, N
         CALL DCOPY( M, B( 1, J ), 1, WORK, 1 )
         CALL DGEMV( 'No transpose', M, M, -ONE, U, LDU, C( 1, J ), 1,
     $               ONE, WORK, 1 )
         RESID = MAX( RESID, DASUM( M, WORK, 1 ) )
   10 CONTINUE
*
*     Compute norm of B.
*
      BNORM = DLANGE( '1', M, N, B, LDB, WORK )
*
      IF( BNORM.LE.ZERO ) THEN
         IF( RESID.NE.ZERO )
     $      RESID = ONE / EPS
      ELSE
         IF( BNORM.GE.RESID ) THEN
            RESID = ( RESID / BNORM ) / ( REALMN*EPS )
         ELSE
            IF( BNORM.LT.ONE ) THEN
               RESID = ( MIN( RESID, REALMN*BNORM ) / BNORM ) /
     $                 ( REALMN*EPS )
            ELSE
               RESID = MIN( RESID / BNORM, REALMN ) / ( REALMN*EPS )
            END IF
         END IF
      END IF
      RETURN
*
*     End of DBDT02
*
      END