1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254
|
*> \brief \b DGET53
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DGET53( A, LDA, B, LDB, SCALE, WR, WI, RESULT, INFO )
*
* .. Scalar Arguments ..
* INTEGER INFO, LDA, LDB
* DOUBLE PRECISION RESULT, SCALE, WI, WR
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGET53 checks the generalized eigenvalues computed by DLAG2.
*>
*> The basic test for an eigenvalue is:
*>
*> | det( s A - w B ) |
*> RESULT = ---------------------------------------------------
*> ulp max( s norm(A), |w| norm(B) )*norm( s A - w B )
*>
*> Two "safety checks" are performed:
*>
*> (1) ulp*max( s*norm(A), |w|*norm(B) ) must be at least
*> safe_minimum. This insures that the test performed is
*> not essentially det(0*A + 0*B)=0.
*>
*> (2) s*norm(A) + |w|*norm(B) must be less than 1/safe_minimum.
*> This insures that s*A - w*B will not overflow.
*>
*> If these tests are not passed, then s and w are scaled and
*> tested anyway, if this is possible.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA, 2)
*> The 2x2 matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A. It must be at least 2.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB, N)
*> The 2x2 upper-triangular matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B. It must be at least 2.
*> \endverbatim
*>
*> \param[in] SCALE
*> \verbatim
*> SCALE is DOUBLE PRECISION
*> The "scale factor" s in the formula s A - w B . It is
*> assumed to be non-negative.
*> \endverbatim
*>
*> \param[in] WR
*> \verbatim
*> WR is DOUBLE PRECISION
*> The real part of the eigenvalue w in the formula
*> s A - w B .
*> \endverbatim
*>
*> \param[in] WI
*> \verbatim
*> WI is DOUBLE PRECISION
*> The imaginary part of the eigenvalue w in the formula
*> s A - w B .
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION
*> If INFO is 2 or less, the value computed by the test
*> described above.
*> If INFO=3, this will just be 1/ulp.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> =0: The input data pass the "safety checks".
*> =1: s*norm(A) + |w|*norm(B) > 1/safe_minimum.
*> =2: ulp*max( s*norm(A), |w|*norm(B) ) < safe_minimum
*> =3: same as INFO=2, but s and w could not be scaled so
*> as to compute the test.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DGET53( A, LDA, B, LDB, SCALE, WR, WI, RESULT, INFO )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER INFO, LDA, LDB
DOUBLE PRECISION RESULT, SCALE, WI, WR
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION ABSW, ANORM, BNORM, CI11, CI12, CI22, CNORM,
$ CR11, CR12, CR21, CR22, CSCALE, DETI, DETR, S1,
$ SAFMIN, SCALES, SIGMIN, TEMP, ULP, WIS, WRS
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH
EXTERNAL DLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, MAX, SQRT
* ..
* .. Executable Statements ..
*
* Initialize
*
INFO = 0
RESULT = ZERO
SCALES = SCALE
WRS = WR
WIS = WI
*
* Machine constants and norms
*
SAFMIN = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
ABSW = ABS( WRS ) + ABS( WIS )
ANORM = MAX( ABS( A( 1, 1 ) )+ABS( A( 2, 1 ) ),
$ ABS( A( 1, 2 ) )+ABS( A( 2, 2 ) ), SAFMIN )
BNORM = MAX( ABS( B( 1, 1 ) ), ABS( B( 1, 2 ) )+ABS( B( 2, 2 ) ),
$ SAFMIN )
*
* Check for possible overflow.
*
TEMP = ( SAFMIN*BNORM )*ABSW + ( SAFMIN*ANORM )*SCALES
IF( TEMP.GE.ONE ) THEN
*
* Scale down to avoid overflow
*
INFO = 1
TEMP = ONE / TEMP
SCALES = SCALES*TEMP
WRS = WRS*TEMP
WIS = WIS*TEMP
ABSW = ABS( WRS ) + ABS( WIS )
END IF
S1 = MAX( ULP*MAX( SCALES*ANORM, ABSW*BNORM ),
$ SAFMIN*MAX( SCALES, ABSW ) )
*
* Check for W and SCALE essentially zero.
*
IF( S1.LT.SAFMIN ) THEN
INFO = 2
IF( SCALES.LT.SAFMIN .AND. ABSW.LT.SAFMIN ) THEN
INFO = 3
RESULT = ONE / ULP
RETURN
END IF
*
* Scale up to avoid underflow
*
TEMP = ONE / MAX( SCALES*ANORM+ABSW*BNORM, SAFMIN )
SCALES = SCALES*TEMP
WRS = WRS*TEMP
WIS = WIS*TEMP
ABSW = ABS( WRS ) + ABS( WIS )
S1 = MAX( ULP*MAX( SCALES*ANORM, ABSW*BNORM ),
$ SAFMIN*MAX( SCALES, ABSW ) )
IF( S1.LT.SAFMIN ) THEN
INFO = 3
RESULT = ONE / ULP
RETURN
END IF
END IF
*
* Compute C = s A - w B
*
CR11 = SCALES*A( 1, 1 ) - WRS*B( 1, 1 )
CI11 = -WIS*B( 1, 1 )
CR21 = SCALES*A( 2, 1 )
CR12 = SCALES*A( 1, 2 ) - WRS*B( 1, 2 )
CI12 = -WIS*B( 1, 2 )
CR22 = SCALES*A( 2, 2 ) - WRS*B( 2, 2 )
CI22 = -WIS*B( 2, 2 )
*
* Compute the smallest singular value of s A - w B:
*
* |det( s A - w B )|
* sigma_min = ------------------
* norm( s A - w B )
*
CNORM = MAX( ABS( CR11 )+ABS( CI11 )+ABS( CR21 ),
$ ABS( CR12 )+ABS( CI12 )+ABS( CR22 )+ABS( CI22 ), SAFMIN )
CSCALE = ONE / SQRT( CNORM )
DETR = ( CSCALE*CR11 )*( CSCALE*CR22 ) -
$ ( CSCALE*CI11 )*( CSCALE*CI22 ) -
$ ( CSCALE*CR12 )*( CSCALE*CR21 )
DETI = ( CSCALE*CR11 )*( CSCALE*CI22 ) +
$ ( CSCALE*CI11 )*( CSCALE*CR22 ) -
$ ( CSCALE*CI12 )*( CSCALE*CR21 )
SIGMIN = ABS( DETR ) + ABS( DETI )
RESULT = SIGMIN / S1
RETURN
*
* End of DGET53
*
END
|