1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
*> \brief \b DGET54
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DGET54( N, A, LDA, B, LDB, S, LDS, T, LDT, U, LDU, V,
* LDV, WORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDB, LDS, LDT, LDU, LDV, N
* DOUBLE PRECISION RESULT
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( LDS, * ),
* $ T( LDT, * ), U( LDU, * ), V( LDV, * ),
* $ WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGET54 checks a generalized decomposition of the form
*>
*> A = U*S*V' and B = U*T* V'
*>
*> where ' means transpose and U and V are orthogonal.
*>
*> Specifically,
*>
*> RESULT = ||( A - U*S*V', B - U*T*V' )|| / (||( A, B )||*n*ulp )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The size of the matrix. If it is zero, DGET54 does nothing.
*> It must be at least zero.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA, N)
*> The original (unfactored) matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A. It must be at least 1
*> and at least N.
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB, N)
*> The original (unfactored) matrix B.
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of B. It must be at least 1
*> and at least N.
*> \endverbatim
*>
*> \param[in] S
*> \verbatim
*> S is DOUBLE PRECISION array, dimension (LDS, N)
*> The factored matrix S.
*> \endverbatim
*>
*> \param[in] LDS
*> \verbatim
*> LDS is INTEGER
*> The leading dimension of S. It must be at least 1
*> and at least N.
*> \endverbatim
*>
*> \param[in] T
*> \verbatim
*> T is DOUBLE PRECISION array, dimension (LDT, N)
*> The factored matrix T.
*> \endverbatim
*>
*> \param[in] LDT
*> \verbatim
*> LDT is INTEGER
*> The leading dimension of T. It must be at least 1
*> and at least N.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is DOUBLE PRECISION array, dimension (LDU, N)
*> The orthogonal matrix on the left-hand side in the
*> decomposition.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of U. LDU must be at least N and
*> at least 1.
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is DOUBLE PRECISION array, dimension (LDV, N)
*> The orthogonal matrix on the left-hand side in the
*> decomposition.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of V. LDV must be at least N and
*> at least 1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (3*N**2)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION
*> The value RESULT, It is currently limited to 1/ulp, to
*> avoid overflow. Errors are flagged by RESULT=10/ulp.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DGET54( N, A, LDA, B, LDB, S, LDS, T, LDT, U, LDU, V,
$ LDV, WORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, LDS, LDT, LDU, LDV, N
DOUBLE PRECISION RESULT
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), B( LDB, * ), S( LDS, * ),
$ T( LDT, * ), U( LDU, * ), V( LDV, * ),
$ WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
DOUBLE PRECISION ABNORM, ULP, UNFL, WNORM
* ..
* .. Local Arrays ..
DOUBLE PRECISION DUM( 1 )
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DLACPY
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
RESULT = ZERO
IF( N.LE.0 )
$ RETURN
*
* Constants
*
UNFL = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
* compute the norm of (A,B)
*
CALL DLACPY( 'Full', N, N, A, LDA, WORK, N )
CALL DLACPY( 'Full', N, N, B, LDB, WORK( N*N+1 ), N )
ABNORM = MAX( DLANGE( '1', N, 2*N, WORK, N, DUM ), UNFL )
*
* Compute W1 = A - U*S*V', and put in the array WORK(1:N*N)
*
CALL DLACPY( ' ', N, N, A, LDA, WORK, N )
CALL DGEMM( 'N', 'N', N, N, N, ONE, U, LDU, S, LDS, ZERO,
$ WORK( N*N+1 ), N )
*
CALL DGEMM( 'N', 'C', N, N, N, -ONE, WORK( N*N+1 ), N, V, LDV,
$ ONE, WORK, N )
*
* Compute W2 = B - U*T*V', and put in the workarray W(N*N+1:2*N*N)
*
CALL DLACPY( ' ', N, N, B, LDB, WORK( N*N+1 ), N )
CALL DGEMM( 'N', 'N', N, N, N, ONE, U, LDU, T, LDT, ZERO,
$ WORK( 2*N*N+1 ), N )
*
CALL DGEMM( 'N', 'C', N, N, N, -ONE, WORK( 2*N*N+1 ), N, V, LDV,
$ ONE, WORK( N*N+1 ), N )
*
* Compute norm(W)/ ( ulp*norm((A,B)) )
*
WNORM = DLANGE( '1', N, 2*N, WORK, N, DUM )
*
IF( ABNORM.GT.WNORM ) THEN
RESULT = ( WNORM / ABNORM ) / ( 2*N*ULP )
ELSE
IF( ABNORM.LT.ONE ) THEN
RESULT = ( MIN( WNORM, 2*N*ABNORM ) / ABNORM ) / ( 2*N*ULP )
ELSE
RESULT = MIN( WNORM / ABNORM, DBLE( 2*N ) ) / ( 2*N*ULP )
END IF
END IF
*
RETURN
*
* End of DGET54
*
END
|