1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229
|
*> \brief \b DGLMTS
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF, X, U,
* WORK, LWORK, RWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER LDA, LDB, LWORK, M, N, P
* DOUBLE PRECISION RESULT
* ..
* .. Array Arguments ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DGLMTS tests DGGGLM - a subroutine for solving the generalized
*> linear model problem.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The number of rows of the matrices A and B. N >= 0.
*> \endverbatim
*>
*> \param[in] M
*> \verbatim
*> M is INTEGER
*> The number of columns of the matrix A. M >= 0.
*> \endverbatim
*>
*> \param[in] P
*> \verbatim
*> P is INTEGER
*> The number of columns of the matrix B. P >= 0.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,M)
*> The N-by-M matrix A.
*> \endverbatim
*>
*> \param[out] AF
*> \verbatim
*> AF is DOUBLE PRECISION array, dimension (LDA,M)
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the arrays A, AF. LDA >= max(M,N).
*> \endverbatim
*>
*> \param[in] B
*> \verbatim
*> B is DOUBLE PRECISION array, dimension (LDB,P)
*> The N-by-P matrix A.
*> \endverbatim
*>
*> \param[out] BF
*> \verbatim
*> BF is DOUBLE PRECISION array, dimension (LDB,P)
*> \endverbatim
*>
*> \param[in] LDB
*> \verbatim
*> LDB is INTEGER
*> The leading dimension of the arrays B, BF. LDB >= max(P,N).
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension( N )
*> On input, the left hand side of the GLM.
*> \endverbatim
*>
*> \param[out] DF
*> \verbatim
*> DF is DOUBLE PRECISION array, dimension( N )
*> \endverbatim
*>
*> \param[out] X
*> \verbatim
*> X is DOUBLE PRECISION array, dimension( M )
*> solution vector X in the GLM problem.
*> \endverbatim
*>
*> \param[out] U
*> \verbatim
*> U is DOUBLE PRECISION array, dimension( P )
*> solution vector U in the GLM problem.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The dimension of the array WORK.
*> \endverbatim
*>
*> \param[out] RWORK
*> \verbatim
*> RWORK is DOUBLE PRECISION array, dimension (M)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION
*> The test ratio:
*> norm( d - A*x - B*u )
*> RESULT = -----------------------------------------
*> (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DGLMTS( N, M, P, A, AF, LDA, B, BF, LDB, D, DF, X, U,
$ WORK, LWORK, RWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER LDA, LDB, LWORK, M, N, P
DOUBLE PRECISION RESULT
* ..
* .. Array Arguments ..
*
* ====================================================================
*
DOUBLE PRECISION A( LDA, * ), AF( LDA, * ), B( LDB, * ),
$ BF( LDB, * ), D( * ), DF( * ), RWORK( * ),
$ U( * ), WORK( LWORK ), X( * )
* ..
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D+0, ONE = 1.0D+0 )
* ..
* .. Local Scalars ..
INTEGER INFO
DOUBLE PRECISION ANORM, BNORM, DNORM, EPS, UNFL, XNORM, YNORM
* ..
* .. External Functions ..
DOUBLE PRECISION DASUM, DLAMCH, DLANGE
EXTERNAL DASUM, DLAMCH, DLANGE
* ..
* .. External Subroutines ..
*
EXTERNAL DCOPY, DGEMV, DGGGLM, DLACPY
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX
* ..
* .. Executable Statements ..
*
EPS = DLAMCH( 'Epsilon' )
UNFL = DLAMCH( 'Safe minimum' )
ANORM = MAX( DLANGE( '1', N, M, A, LDA, RWORK ), UNFL )
BNORM = MAX( DLANGE( '1', N, P, B, LDB, RWORK ), UNFL )
*
* Copy the matrices A and B to the arrays AF and BF,
* and the vector D the array DF.
*
CALL DLACPY( 'Full', N, M, A, LDA, AF, LDA )
CALL DLACPY( 'Full', N, P, B, LDB, BF, LDB )
CALL DCOPY( N, D, 1, DF, 1 )
*
* Solve GLM problem
*
CALL DGGGLM( N, M, P, AF, LDA, BF, LDB, DF, X, U, WORK, LWORK,
$ INFO )
*
* Test the residual for the solution of LSE
*
* norm( d - A*x - B*u )
* RESULT = -----------------------------------------
* (norm(A)+norm(B))*(norm(x)+norm(u))*EPS
*
CALL DCOPY( N, D, 1, DF, 1 )
CALL DGEMV( 'No transpose', N, M, -ONE, A, LDA, X, 1, ONE, DF, 1 )
*
CALL DGEMV( 'No transpose', N, P, -ONE, B, LDB, U, 1, ONE, DF, 1 )
*
DNORM = DASUM( N, DF, 1 )
XNORM = DASUM( M, X, 1 ) + DASUM( P, U, 1 )
YNORM = ANORM + BNORM
*
IF( XNORM.LE.ZERO ) THEN
RESULT = ZERO
ELSE
RESULT = ( ( DNORM / YNORM ) / XNORM ) / EPS
END IF
*
RETURN
*
* End of DGLMTS
*
END
|