1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220
|
*> \brief \b DHST01
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DHST01( N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK,
* LWORK, RESULT )
*
* .. Scalar Arguments ..
* INTEGER IHI, ILO, LDA, LDH, LDQ, LWORK, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), H( LDH, * ), Q( LDQ, * ),
* $ RESULT( 2 ), WORK( LWORK )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DHST01 tests the reduction of a general matrix A to upper Hessenberg
*> form: A = Q*H*Q'. Two test ratios are computed;
*>
*> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
*> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
*>
*> The matrix Q is assumed to be given explicitly as it would be
*> following DGEHRD + DORGHR.
*>
*> In this version, ILO and IHI are not used and are assumed to be 1 and
*> N, respectively.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The order of the matrix A. N >= 0.
*> \endverbatim
*>
*> \param[in] ILO
*> \verbatim
*> ILO is INTEGER
*> \endverbatim
*>
*> \param[in] IHI
*> \verbatim
*> IHI is INTEGER
*>
*> A is assumed to be upper triangular in rows and columns
*> 1:ILO-1 and IHI+1:N, so Q differs from the identity only in
*> rows and columns ILO+1:IHI.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA,N)
*> The original n by n matrix A.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of the array A. LDA >= max(1,N).
*> \endverbatim
*>
*> \param[in] H
*> \verbatim
*> H is DOUBLE PRECISION array, dimension (LDH,N)
*> The upper Hessenberg matrix H from the reduction A = Q*H*Q'
*> as computed by DGEHRD. H is assumed to be zero below the
*> first subdiagonal.
*> \endverbatim
*>
*> \param[in] LDH
*> \verbatim
*> LDH is INTEGER
*> The leading dimension of the array H. LDH >= max(1,N).
*> \endverbatim
*>
*> \param[in] Q
*> \verbatim
*> Q is DOUBLE PRECISION array, dimension (LDQ,N)
*> The orthogonal matrix Q from the reduction A = Q*H*Q' as
*> computed by DGEHRD + DORGHR.
*> \endverbatim
*>
*> \param[in] LDQ
*> \verbatim
*> LDQ is INTEGER
*> The leading dimension of the array Q. LDQ >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. LWORK >= 2*N*N.
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (2)
*> RESULT(1) = norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
*> RESULT(2) = norm( I - Q'*Q ) / ( N * EPS )
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DHST01( N, ILO, IHI, A, LDA, H, LDH, Q, LDQ, WORK,
$ LWORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
INTEGER IHI, ILO, LDA, LDH, LDQ, LWORK, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), H( LDH, * ), Q( LDQ, * ),
$ RESULT( 2 ), WORK( LWORK )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ONE, ZERO
PARAMETER ( ONE = 1.0D+0, ZERO = 0.0D+0 )
* ..
* .. Local Scalars ..
INTEGER LDWORK
DOUBLE PRECISION ANORM, EPS, OVFL, SMLNUM, UNFL, WNORM
* ..
* .. External Functions ..
DOUBLE PRECISION DLAMCH, DLANGE
EXTERNAL DLAMCH, DLANGE
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DLABAD, DLACPY, DORT01
* ..
* .. Intrinsic Functions ..
INTRINSIC MAX, MIN
* ..
* .. Executable Statements ..
*
* Quick return if possible
*
IF( N.LE.0 ) THEN
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
RETURN
END IF
*
UNFL = DLAMCH( 'Safe minimum' )
EPS = DLAMCH( 'Precision' )
OVFL = ONE / UNFL
CALL DLABAD( UNFL, OVFL )
SMLNUM = UNFL*N / EPS
*
* Test 1: Compute norm( A - Q*H*Q' ) / ( norm(A) * N * EPS )
*
* Copy A to WORK
*
LDWORK = MAX( 1, N )
CALL DLACPY( ' ', N, N, A, LDA, WORK, LDWORK )
*
* Compute Q*H
*
CALL DGEMM( 'No transpose', 'No transpose', N, N, N, ONE, Q, LDQ,
$ H, LDH, ZERO, WORK( LDWORK*N+1 ), LDWORK )
*
* Compute A - Q*H*Q'
*
CALL DGEMM( 'No transpose', 'Transpose', N, N, N, -ONE,
$ WORK( LDWORK*N+1 ), LDWORK, Q, LDQ, ONE, WORK,
$ LDWORK )
*
ANORM = MAX( DLANGE( '1', N, N, A, LDA, WORK( LDWORK*N+1 ) ),
$ UNFL )
WNORM = DLANGE( '1', N, N, WORK, LDWORK, WORK( LDWORK*N+1 ) )
*
* Note that RESULT(1) cannot overflow and is bounded by 1/(N*EPS)
*
RESULT( 1 ) = MIN( WNORM, ANORM ) / MAX( SMLNUM, ANORM*EPS ) / N
*
* Test 2: Compute norm( I - Q'*Q ) / ( N * EPS )
*
CALL DORT01( 'Columns', N, N, Q, LDQ, WORK, LWORK, RESULT( 2 ) )
*
RETURN
*
* End of DHST01
*
END
|