1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
*> \brief \b DORT03
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DORT03( RC, MU, MV, N, K, U, LDU, V, LDV, WORK, LWORK,
* RESULT, INFO )
*
* .. Scalar Arguments ..
* CHARACTER*( * ) RC
* INTEGER INFO, K, LDU, LDV, LWORK, MU, MV, N
* DOUBLE PRECISION RESULT
* ..
* .. Array Arguments ..
* DOUBLE PRECISION U( LDU, * ), V( LDV, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DORT03 compares two orthogonal matrices U and V to see if their
*> corresponding rows or columns span the same spaces. The rows are
*> checked if RC = 'R', and the columns are checked if RC = 'C'.
*>
*> RESULT is the maximum of
*>
*> | V*V' - I | / ( MV ulp ), if RC = 'R', or
*>
*> | V'*V - I | / ( MV ulp ), if RC = 'C',
*>
*> and the maximum over rows (or columns) 1 to K of
*>
*> | U(i) - S*V(i) |/ ( N ulp )
*>
*> where S is +-1 (chosen to minimize the expression), U(i) is the i-th
*> row (column) of U, and V(i) is the i-th row (column) of V.
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] RC
*> \verbatim
*> RC is CHARACTER*1
*> If RC = 'R' the rows of U and V are to be compared.
*> If RC = 'C' the columns of U and V are to be compared.
*> \endverbatim
*>
*> \param[in] MU
*> \verbatim
*> MU is INTEGER
*> The number of rows of U if RC = 'R', and the number of
*> columns if RC = 'C'. If MU = 0 DORT03 does nothing.
*> MU must be at least zero.
*> \endverbatim
*>
*> \param[in] MV
*> \verbatim
*> MV is INTEGER
*> The number of rows of V if RC = 'R', and the number of
*> columns if RC = 'C'. If MV = 0 DORT03 does nothing.
*> MV must be at least zero.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> If RC = 'R', the number of columns in the matrices U and V,
*> and if RC = 'C', the number of rows in U and V. If N = 0
*> DORT03 does nothing. N must be at least zero.
*> \endverbatim
*>
*> \param[in] K
*> \verbatim
*> K is INTEGER
*> The number of rows or columns of U and V to compare.
*> 0 <= K <= max(MU,MV).
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is DOUBLE PRECISION array, dimension (LDU,N)
*> The first matrix to compare. If RC = 'R', U is MU by N, and
*> if RC = 'C', U is N by MU.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of U. If RC = 'R', LDU >= max(1,MU),
*> and if RC = 'C', LDU >= max(1,N).
*> \endverbatim
*>
*> \param[in] V
*> \verbatim
*> V is DOUBLE PRECISION array, dimension (LDV,N)
*> The second matrix to compare. If RC = 'R', V is MV by N, and
*> if RC = 'C', V is N by MV.
*> \endverbatim
*>
*> \param[in] LDV
*> \verbatim
*> LDV is INTEGER
*> The leading dimension of V. If RC = 'R', LDV >= max(1,MV),
*> and if RC = 'C', LDV >= max(1,N).
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (LWORK)
*> \endverbatim
*>
*> \param[in] LWORK
*> \verbatim
*> LWORK is INTEGER
*> The length of the array WORK. For best performance, LWORK
*> should be at least N*N if RC = 'C' or M*M if RC = 'R', but
*> the tests will be done even if LWORK is 0.
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION
*> The value computed by the test described above. RESULT is
*> limited to 1/ulp to avoid overflow.
*> \endverbatim
*>
*> \param[out] INFO
*> \verbatim
*> INFO is INTEGER
*> 0 indicates a successful exit
*> -k indicates the k-th parameter had an illegal value
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DORT03( RC, MU, MV, N, K, U, LDU, V, LDV, WORK, LWORK,
$ RESULT, INFO )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER*( * ) RC
INTEGER INFO, K, LDU, LDV, LWORK, MU, MV, N
DOUBLE PRECISION RESULT
* ..
* .. Array Arguments ..
DOUBLE PRECISION U( LDU, * ), V( LDV, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
INTEGER I, IRC, J, LMX
DOUBLE PRECISION RES1, RES2, S, ULP
* ..
* .. External Functions ..
LOGICAL LSAME
INTEGER IDAMAX
DOUBLE PRECISION DLAMCH
EXTERNAL LSAME, IDAMAX, DLAMCH
* ..
* .. Intrinsic Functions ..
INTRINSIC ABS, DBLE, MAX, MIN, SIGN
* ..
* .. External Subroutines ..
EXTERNAL DORT01, XERBLA
* ..
* .. Executable Statements ..
*
* Check inputs
*
INFO = 0
IF( LSAME( RC, 'R' ) ) THEN
IRC = 0
ELSE IF( LSAME( RC, 'C' ) ) THEN
IRC = 1
ELSE
IRC = -1
END IF
IF( IRC.EQ.-1 ) THEN
INFO = -1
ELSE IF( MU.LT.0 ) THEN
INFO = -2
ELSE IF( MV.LT.0 ) THEN
INFO = -3
ELSE IF( N.LT.0 ) THEN
INFO = -4
ELSE IF( K.LT.0 .OR. K.GT.MAX( MU, MV ) ) THEN
INFO = -5
ELSE IF( ( IRC.EQ.0 .AND. LDU.LT.MAX( 1, MU ) ) .OR.
$ ( IRC.EQ.1 .AND. LDU.LT.MAX( 1, N ) ) ) THEN
INFO = -7
ELSE IF( ( IRC.EQ.0 .AND. LDV.LT.MAX( 1, MV ) ) .OR.
$ ( IRC.EQ.1 .AND. LDV.LT.MAX( 1, N ) ) ) THEN
INFO = -9
END IF
IF( INFO.NE.0 ) THEN
CALL XERBLA( 'DORT03', -INFO )
RETURN
END IF
*
* Initialize result
*
RESULT = ZERO
IF( MU.EQ.0 .OR. MV.EQ.0 .OR. N.EQ.0 )
$ RETURN
*
* Machine constants
*
ULP = DLAMCH( 'Precision' )
*
IF( IRC.EQ.0 ) THEN
*
* Compare rows
*
RES1 = ZERO
DO 20 I = 1, K
LMX = IDAMAX( N, U( I, 1 ), LDU )
S = SIGN( ONE, U( I, LMX ) )*SIGN( ONE, V( I, LMX ) )
DO 10 J = 1, N
RES1 = MAX( RES1, ABS( U( I, J )-S*V( I, J ) ) )
10 CONTINUE
20 CONTINUE
RES1 = RES1 / ( DBLE( N )*ULP )
*
* Compute orthogonality of rows of V.
*
CALL DORT01( 'Rows', MV, N, V, LDV, WORK, LWORK, RES2 )
*
ELSE
*
* Compare columns
*
RES1 = ZERO
DO 40 I = 1, K
LMX = IDAMAX( N, U( 1, I ), 1 )
S = SIGN( ONE, U( LMX, I ) )*SIGN( ONE, V( LMX, I ) )
DO 30 J = 1, N
RES1 = MAX( RES1, ABS( U( J, I )-S*V( J, I ) ) )
30 CONTINUE
40 CONTINUE
RES1 = RES1 / ( DBLE( N )*ULP )
*
* Compute orthogonality of columns of V.
*
CALL DORT01( 'Columns', N, MV, V, LDV, WORK, LWORK, RES2 )
END IF
*
RESULT = MIN( MAX( RES1, RES2 ), ONE / ULP )
RETURN
*
* End of DORT03
*
END
|