1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284
|
*> \brief \b DSBT21
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DSBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
* RESULT )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER KA, KS, LDA, LDU, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
* $ U( LDU, * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DSBT21 generally checks a decomposition of the form
*>
*> A = U S U'
*>
*> where ' means transpose, A is symmetric banded, U is
*> orthogonal, and S is diagonal (if KS=0) or symmetric
*> tridiagonal (if KS=1).
*>
*> Specifically:
*>
*> RESULT(1) = | A - U S U' | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU' | / ( n ulp )
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER
*> If UPLO='U', the upper triangle of A and V will be used and
*> the (strictly) lower triangle will not be referenced.
*> If UPLO='L', the lower triangle of A and V will be used and
*> the (strictly) upper triangle will not be referenced.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The size of the matrix. If it is zero, DSBT21 does nothing.
*> It must be at least zero.
*> \endverbatim
*>
*> \param[in] KA
*> \verbatim
*> KA is INTEGER
*> The bandwidth of the matrix A. It must be at least zero. If
*> it is larger than N-1, then max( 0, N-1 ) will be used.
*> \endverbatim
*>
*> \param[in] KS
*> \verbatim
*> KS is INTEGER
*> The bandwidth of the matrix S. It may only be zero or one.
*> If zero, then S is diagonal, and E is not referenced. If
*> one, then S is symmetric tri-diagonal.
*> \endverbatim
*>
*> \param[in] A
*> \verbatim
*> A is DOUBLE PRECISION array, dimension (LDA, N)
*> The original (unfactored) matrix. It is assumed to be
*> symmetric, and only the upper (UPLO='U') or only the lower
*> (UPLO='L') will be referenced.
*> \endverbatim
*>
*> \param[in] LDA
*> \verbatim
*> LDA is INTEGER
*> The leading dimension of A. It must be at least 1
*> and at least min( KA, N-1 ).
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The diagonal of the (symmetric tri-) diagonal matrix S.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (N-1)
*> The off-diagonal of the (symmetric tri-) diagonal matrix S.
*> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
*> (3,2) element, etc.
*> Not referenced if KS=0.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is DOUBLE PRECISION array, dimension (LDU, N)
*> The orthogonal matrix in the decomposition, expressed as a
*> dense matrix (i.e., not as a product of Householder
*> transformations, Givens transformations, etc.)
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of U. LDU must be at least N and
*> at least 1.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (N**2+N)
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (2)
*> The values computed by the two tests described above. The
*> values are currently limited to 1/ulp, to avoid overflow.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DSBT21( UPLO, N, KA, KS, A, LDA, D, E, U, LDU, WORK,
$ RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER KA, KS, LDA, LDU, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION A( LDA, * ), D( * ), E( * ), RESULT( 2 ),
$ U( LDU, * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0 )
* ..
* .. Local Scalars ..
LOGICAL LOWER
CHARACTER CUPLO
INTEGER IKA, J, JC, JR, LW
DOUBLE PRECISION ANORM, ULP, UNFL, WNORM
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DLAMCH, DLANGE, DLANSB, DLANSP
EXTERNAL LSAME, DLAMCH, DLANGE, DLANSB, DLANSP
* ..
* .. External Subroutines ..
EXTERNAL DGEMM, DSPR, DSPR2
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
* Constants
*
RESULT( 1 ) = ZERO
RESULT( 2 ) = ZERO
IF( N.LE.0 )
$ RETURN
*
IKA = MAX( 0, MIN( N-1, KA ) )
LW = ( N*( N+1 ) ) / 2
*
IF( LSAME( UPLO, 'U' ) ) THEN
LOWER = .FALSE.
CUPLO = 'U'
ELSE
LOWER = .TRUE.
CUPLO = 'L'
END IF
*
UNFL = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
* Some Error Checks
*
* Do Test 1
*
* Norm of A:
*
ANORM = MAX( DLANSB( '1', CUPLO, N, IKA, A, LDA, WORK ), UNFL )
*
* Compute error matrix: Error = A - U S U'
*
* Copy A from SB to SP storage format.
*
J = 0
DO 50 JC = 1, N
IF( LOWER ) THEN
DO 10 JR = 1, MIN( IKA+1, N+1-JC )
J = J + 1
WORK( J ) = A( JR, JC )
10 CONTINUE
DO 20 JR = IKA + 2, N + 1 - JC
J = J + 1
WORK( J ) = ZERO
20 CONTINUE
ELSE
DO 30 JR = IKA + 2, JC
J = J + 1
WORK( J ) = ZERO
30 CONTINUE
DO 40 JR = MIN( IKA, JC-1 ), 0, -1
J = J + 1
WORK( J ) = A( IKA+1-JR, JC )
40 CONTINUE
END IF
50 CONTINUE
*
DO 60 J = 1, N
CALL DSPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
60 CONTINUE
*
IF( N.GT.1 .AND. KS.EQ.1 ) THEN
DO 70 J = 1, N - 1
CALL DSPR2( CUPLO, N, -E( J ), U( 1, J ), 1, U( 1, J+1 ), 1,
$ WORK )
70 CONTINUE
END IF
WNORM = DLANSP( '1', CUPLO, N, WORK, WORK( LW+1 ) )
*
IF( ANORM.GT.WNORM ) THEN
RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
ELSE
RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
END IF
END IF
*
* Do Test 2
*
* Compute UU' - I
*
CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
$ N )
*
DO 80 J = 1, N
WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
80 CONTINUE
*
RESULT( 2 ) = MIN( DLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) ),
$ DBLE( N ) ) / ( N*ULP )
*
RETURN
*
* End of DSBT21
*
END
|