1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441
|
*> \brief \b DSPT21
*
* =========== DOCUMENTATION ===========
*
* Online html documentation available at
* http://www.netlib.org/lapack/explore-html/
*
* Definition:
* ===========
*
* SUBROUTINE DSPT21( ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP,
* TAU, WORK, RESULT )
*
* .. Scalar Arguments ..
* CHARACTER UPLO
* INTEGER ITYPE, KBAND, LDU, N
* ..
* .. Array Arguments ..
* DOUBLE PRECISION AP( * ), D( * ), E( * ), RESULT( 2 ), TAU( * ),
* $ U( LDU, * ), VP( * ), WORK( * )
* ..
*
*
*> \par Purpose:
* =============
*>
*> \verbatim
*>
*> DSPT21 generally checks a decomposition of the form
*>
*> A = U S U'
*>
*> where ' means transpose, A is symmetric (stored in packed format), U
*> is orthogonal, and S is diagonal (if KBAND=0) or symmetric
*> tridiagonal (if KBAND=1). If ITYPE=1, then U is represented as a
*> dense matrix, otherwise the U is expressed as a product of
*> Householder transformations, whose vectors are stored in the array
*> "V" and whose scaling constants are in "TAU"; we shall use the
*> letter "V" to refer to the product of Householder transformations
*> (which should be equal to U).
*>
*> Specifically, if ITYPE=1, then:
*>
*> RESULT(1) = | A - U S U' | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU' | / ( n ulp )
*>
*> If ITYPE=2, then:
*>
*> RESULT(1) = | A - V S V' | / ( |A| n ulp )
*>
*> If ITYPE=3, then:
*>
*> RESULT(1) = | I - VU' | / ( n ulp )
*>
*> Packed storage means that, for example, if UPLO='U', then the columns
*> of the upper triangle of A are stored one after another, so that
*> A(1,j+1) immediately follows A(j,j) in the array AP. Similarly, if
*> UPLO='L', then the columns of the lower triangle of A are stored one
*> after another in AP, so that A(j+1,j+1) immediately follows A(n,j)
*> in the array AP. This means that A(i,j) is stored in:
*>
*> AP( i + j*(j-1)/2 ) if UPLO='U'
*>
*> AP( i + (2*n-j)*(j-1)/2 ) if UPLO='L'
*>
*> The array VP bears the same relation to the matrix V that A does to
*> AP.
*>
*> For ITYPE > 1, the transformation U is expressed as a product
*> of Householder transformations:
*>
*> If UPLO='U', then V = H(n-1)...H(1), where
*>
*> H(j) = I - tau(j) v(j) v(j)'
*>
*> and the first j-1 elements of v(j) are stored in V(1:j-1,j+1),
*> (i.e., VP( j*(j+1)/2 + 1 : j*(j+1)/2 + j-1 ) ),
*> the j-th element is 1, and the last n-j elements are 0.
*>
*> If UPLO='L', then V = H(1)...H(n-1), where
*>
*> H(j) = I - tau(j) v(j) v(j)'
*>
*> and the first j elements of v(j) are 0, the (j+1)-st is 1, and the
*> (j+2)-nd through n-th elements are stored in V(j+2:n,j) (i.e.,
*> in VP( (2*n-j)*(j-1)/2 + j+2 : (2*n-j)*(j-1)/2 + n ) .)
*> \endverbatim
*
* Arguments:
* ==========
*
*> \param[in] ITYPE
*> \verbatim
*> ITYPE is INTEGER
*> Specifies the type of tests to be performed.
*> 1: U expressed as a dense orthogonal matrix:
*> RESULT(1) = | A - U S U' | / ( |A| n ulp ) *andC> RESULT(2) = | I - UU' | / ( n ulp )
*>
*> 2: U expressed as a product V of Housholder transformations:
*> RESULT(1) = | A - V S V' | / ( |A| n ulp )
*>
*> 3: U expressed both as a dense orthogonal matrix and
*> as a product of Housholder transformations:
*> RESULT(1) = | I - VU' | / ( n ulp )
*> \endverbatim
*>
*> \param[in] UPLO
*> \verbatim
*> UPLO is CHARACTER
*> If UPLO='U', AP and VP are considered to contain the upper
*> triangle of A and V.
*> If UPLO='L', AP and VP are considered to contain the lower
*> triangle of A and V.
*> \endverbatim
*>
*> \param[in] N
*> \verbatim
*> N is INTEGER
*> The size of the matrix. If it is zero, DSPT21 does nothing.
*> It must be at least zero.
*> \endverbatim
*>
*> \param[in] KBAND
*> \verbatim
*> KBAND is INTEGER
*> The bandwidth of the matrix. It may only be zero or one.
*> If zero, then S is diagonal, and E is not referenced. If
*> one, then S is symmetric tri-diagonal.
*> \endverbatim
*>
*> \param[in] AP
*> \verbatim
*> AP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
*> The original (unfactored) matrix. It is assumed to be
*> symmetric, and contains the columns of just the upper
*> triangle (UPLO='U') or only the lower triangle (UPLO='L'),
*> packed one after another.
*> \endverbatim
*>
*> \param[in] D
*> \verbatim
*> D is DOUBLE PRECISION array, dimension (N)
*> The diagonal of the (symmetric tri-) diagonal matrix.
*> \endverbatim
*>
*> \param[in] E
*> \verbatim
*> E is DOUBLE PRECISION array, dimension (N-1)
*> The off-diagonal of the (symmetric tri-) diagonal matrix.
*> E(1) is the (1,2) and (2,1) element, E(2) is the (2,3) and
*> (3,2) element, etc.
*> Not referenced if KBAND=0.
*> \endverbatim
*>
*> \param[in] U
*> \verbatim
*> U is DOUBLE PRECISION array, dimension (LDU, N)
*> If ITYPE=1 or 3, this contains the orthogonal matrix in
*> the decomposition, expressed as a dense matrix. If ITYPE=2,
*> then it is not referenced.
*> \endverbatim
*>
*> \param[in] LDU
*> \verbatim
*> LDU is INTEGER
*> The leading dimension of U. LDU must be at least N and
*> at least 1.
*> \endverbatim
*>
*> \param[in] VP
*> \verbatim
*> VP is DOUBLE PRECISION array, dimension (N*(N+1)/2)
*> If ITYPE=2 or 3, the columns of this array contain the
*> Householder vectors used to describe the orthogonal matrix
*> in the decomposition, as described in purpose.
*> *NOTE* If ITYPE=2 or 3, V is modified and restored. The
*> subdiagonal (if UPLO='L') or the superdiagonal (if UPLO='U')
*> is set to one, and later reset to its original value, during
*> the course of the calculation.
*> If ITYPE=1, then it is neither referenced nor modified.
*> \endverbatim
*>
*> \param[in] TAU
*> \verbatim
*> TAU is DOUBLE PRECISION array, dimension (N)
*> If ITYPE >= 2, then TAU(j) is the scalar factor of
*> v(j) v(j)' in the Householder transformation H(j) of
*> the product U = H(1)...H(n-2)
*> If ITYPE < 2, then TAU is not referenced.
*> \endverbatim
*>
*> \param[out] WORK
*> \verbatim
*> WORK is DOUBLE PRECISION array, dimension (N**2+N)
*> Workspace.
*> \endverbatim
*>
*> \param[out] RESULT
*> \verbatim
*> RESULT is DOUBLE PRECISION array, dimension (2)
*> The values computed by the two tests described above. The
*> values are currently limited to 1/ulp, to avoid overflow.
*> RESULT(1) is always modified. RESULT(2) is modified only
*> if ITYPE=1.
*> \endverbatim
*
* Authors:
* ========
*
*> \author Univ. of Tennessee
*> \author Univ. of California Berkeley
*> \author Univ. of Colorado Denver
*> \author NAG Ltd.
*
*> \date November 2011
*
*> \ingroup double_eig
*
* =====================================================================
SUBROUTINE DSPT21( ITYPE, UPLO, N, KBAND, AP, D, E, U, LDU, VP,
$ TAU, WORK, RESULT )
*
* -- LAPACK test routine (version 3.4.0) --
* -- LAPACK is a software package provided by Univ. of Tennessee, --
* -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
* November 2011
*
* .. Scalar Arguments ..
CHARACTER UPLO
INTEGER ITYPE, KBAND, LDU, N
* ..
* .. Array Arguments ..
DOUBLE PRECISION AP( * ), D( * ), E( * ), RESULT( 2 ), TAU( * ),
$ U( LDU, * ), VP( * ), WORK( * )
* ..
*
* =====================================================================
*
* .. Parameters ..
DOUBLE PRECISION ZERO, ONE, TEN
PARAMETER ( ZERO = 0.0D0, ONE = 1.0D0, TEN = 10.0D0 )
DOUBLE PRECISION HALF
PARAMETER ( HALF = 1.0D+0 / 2.0D+0 )
* ..
* .. Local Scalars ..
LOGICAL LOWER
CHARACTER CUPLO
INTEGER IINFO, J, JP, JP1, JR, LAP
DOUBLE PRECISION ANORM, TEMP, ULP, UNFL, VSAVE, WNORM
* ..
* .. External Functions ..
LOGICAL LSAME
DOUBLE PRECISION DDOT, DLAMCH, DLANGE, DLANSP
EXTERNAL LSAME, DDOT, DLAMCH, DLANGE, DLANSP
* ..
* .. External Subroutines ..
EXTERNAL DAXPY, DCOPY, DGEMM, DLACPY, DLASET, DOPMTR,
$ DSPMV, DSPR, DSPR2
* ..
* .. Intrinsic Functions ..
INTRINSIC DBLE, MAX, MIN
* ..
* .. Executable Statements ..
*
* 1) Constants
*
RESULT( 1 ) = ZERO
IF( ITYPE.EQ.1 )
$ RESULT( 2 ) = ZERO
IF( N.LE.0 )
$ RETURN
*
LAP = ( N*( N+1 ) ) / 2
*
IF( LSAME( UPLO, 'U' ) ) THEN
LOWER = .FALSE.
CUPLO = 'U'
ELSE
LOWER = .TRUE.
CUPLO = 'L'
END IF
*
UNFL = DLAMCH( 'Safe minimum' )
ULP = DLAMCH( 'Epsilon' )*DLAMCH( 'Base' )
*
* Some Error Checks
*
IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
RESULT( 1 ) = TEN / ULP
RETURN
END IF
*
* Do Test 1
*
* Norm of A:
*
IF( ITYPE.EQ.3 ) THEN
ANORM = ONE
ELSE
ANORM = MAX( DLANSP( '1', CUPLO, N, AP, WORK ), UNFL )
END IF
*
* Compute error matrix:
*
IF( ITYPE.EQ.1 ) THEN
*
* ITYPE=1: error = A - U S U'
*
CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
CALL DCOPY( LAP, AP, 1, WORK, 1 )
*
DO 10 J = 1, N
CALL DSPR( CUPLO, N, -D( J ), U( 1, J ), 1, WORK )
10 CONTINUE
*
IF( N.GT.1 .AND. KBAND.EQ.1 ) THEN
DO 20 J = 1, N - 1
CALL DSPR2( CUPLO, N, -E( J ), U( 1, J ), 1, U( 1, J+1 ),
$ 1, WORK )
20 CONTINUE
END IF
WNORM = DLANSP( '1', CUPLO, N, WORK, WORK( N**2+1 ) )
*
ELSE IF( ITYPE.EQ.2 ) THEN
*
* ITYPE=2: error = V S V' - A
*
CALL DLASET( 'Full', N, N, ZERO, ZERO, WORK, N )
*
IF( LOWER ) THEN
WORK( LAP ) = D( N )
DO 40 J = N - 1, 1, -1
JP = ( ( 2*N-J )*( J-1 ) ) / 2
JP1 = JP + N - J
IF( KBAND.EQ.1 ) THEN
WORK( JP+J+1 ) = ( ONE-TAU( J ) )*E( J )
DO 30 JR = J + 2, N
WORK( JP+JR ) = -TAU( J )*E( J )*VP( JP+JR )
30 CONTINUE
END IF
*
IF( TAU( J ).NE.ZERO ) THEN
VSAVE = VP( JP+J+1 )
VP( JP+J+1 ) = ONE
CALL DSPMV( 'L', N-J, ONE, WORK( JP1+J+1 ),
$ VP( JP+J+1 ), 1, ZERO, WORK( LAP+1 ), 1 )
TEMP = -HALF*TAU( J )*DDOT( N-J, WORK( LAP+1 ), 1,
$ VP( JP+J+1 ), 1 )
CALL DAXPY( N-J, TEMP, VP( JP+J+1 ), 1, WORK( LAP+1 ),
$ 1 )
CALL DSPR2( 'L', N-J, -TAU( J ), VP( JP+J+1 ), 1,
$ WORK( LAP+1 ), 1, WORK( JP1+J+1 ) )
VP( JP+J+1 ) = VSAVE
END IF
WORK( JP+J ) = D( J )
40 CONTINUE
ELSE
WORK( 1 ) = D( 1 )
DO 60 J = 1, N - 1
JP = ( J*( J-1 ) ) / 2
JP1 = JP + J
IF( KBAND.EQ.1 ) THEN
WORK( JP1+J ) = ( ONE-TAU( J ) )*E( J )
DO 50 JR = 1, J - 1
WORK( JP1+JR ) = -TAU( J )*E( J )*VP( JP1+JR )
50 CONTINUE
END IF
*
IF( TAU( J ).NE.ZERO ) THEN
VSAVE = VP( JP1+J )
VP( JP1+J ) = ONE
CALL DSPMV( 'U', J, ONE, WORK, VP( JP1+1 ), 1, ZERO,
$ WORK( LAP+1 ), 1 )
TEMP = -HALF*TAU( J )*DDOT( J, WORK( LAP+1 ), 1,
$ VP( JP1+1 ), 1 )
CALL DAXPY( J, TEMP, VP( JP1+1 ), 1, WORK( LAP+1 ),
$ 1 )
CALL DSPR2( 'U', J, -TAU( J ), VP( JP1+1 ), 1,
$ WORK( LAP+1 ), 1, WORK )
VP( JP1+J ) = VSAVE
END IF
WORK( JP1+J+1 ) = D( J+1 )
60 CONTINUE
END IF
*
DO 70 J = 1, LAP
WORK( J ) = WORK( J ) - AP( J )
70 CONTINUE
WNORM = DLANSP( '1', CUPLO, N, WORK, WORK( LAP+1 ) )
*
ELSE IF( ITYPE.EQ.3 ) THEN
*
* ITYPE=3: error = U V' - I
*
IF( N.LT.2 )
$ RETURN
CALL DLACPY( ' ', N, N, U, LDU, WORK, N )
CALL DOPMTR( 'R', CUPLO, 'T', N, N, VP, TAU, WORK, N,
$ WORK( N**2+1 ), IINFO )
IF( IINFO.NE.0 ) THEN
RESULT( 1 ) = TEN / ULP
RETURN
END IF
*
DO 80 J = 1, N
WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
80 CONTINUE
*
WNORM = DLANGE( '1', N, N, WORK, N, WORK( N**2+1 ) )
END IF
*
IF( ANORM.GT.WNORM ) THEN
RESULT( 1 ) = ( WNORM / ANORM ) / ( N*ULP )
ELSE
IF( ANORM.LT.ONE ) THEN
RESULT( 1 ) = ( MIN( WNORM, N*ANORM ) / ANORM ) / ( N*ULP )
ELSE
RESULT( 1 ) = MIN( WNORM / ANORM, DBLE( N ) ) / ( N*ULP )
END IF
END IF
*
* Do Test 2
*
* Compute UU' - I
*
IF( ITYPE.EQ.1 ) THEN
CALL DGEMM( 'N', 'C', N, N, N, ONE, U, LDU, U, LDU, ZERO, WORK,
$ N )
*
DO 90 J = 1, N
WORK( ( N+1 )*( J-1 )+1 ) = WORK( ( N+1 )*( J-1 )+1 ) - ONE
90 CONTINUE
*
RESULT( 2 ) = MIN( DLANGE( '1', N, N, WORK, N,
$ WORK( N**2+1 ) ), DBLE( N ) ) / ( N*ULP )
END IF
*
RETURN
*
* End of DSPT21
*
END
|